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Abstract  
In this paper we present and analyze new referential statistics for risk 

assessment on geographical concentration of global supply chains. The study’s net 
contribution rests on the development of a metric which indicates geographical 
concentration in terms of the frequency of supply chain engagement with the regions 
of analytical concerns, alongside the traditional approach based on volume measures 
of value-added concentration.  

Japan, a country with a high propensity to encounter natural hazards, and 
China, under a mounting geopolitical tension with the United States, are chosen as 
target regions for the risk assessment. The analysis follows a line of techniques in 
input-output economics known as the “key sector analysis”, yet with methodological 
augmentation by a compatible analytical framework in the network theory. Using the 
latest set of multi-country input-output tables constructed by the Organisation for 
Economic Co-operation and Development (OECD), the concentration risks of some key 
global supply chains such as the automotive industry and the ICT/electronics 
equipment industry are identified. 
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1. Introduction 
 

The world economy in the 21st century has given a rise to new production 
arrangement known as global value chains (GVCs), in which production processes are 
sliced and relocated to the places where the corresponding tasks are most efficiently 
performed.1 Thanks to the rapid advancement of transportation modes and information 
& communication technology (ICT), production networks continued to expand to cover 
every corner of the globe; yet, at the same time, the pursuit of optimal allocation of 
resources often resulted in agglomeration and concentration of key production capacities 
in a certain region of a certain country. 

This may work well in a good time, but when things start to go wrong, such 
production hubs can turn to “choke points” of the entire economic system. The multiple 
examples are found in the recent history; the Lehman Shock, the Great East Japan 
Earthquake, or various forms of cyber-attacks, where hyper economic interdependency 
rendered the production and financial system particularly vulnerable to a single point of 
failure.  

The series of incidents has driven our attention to the systematic risk associated 
with geographical concentration of supply chains in global production networks. Flows 
of goods, money, people, and information jointly form a highly complicated nexus of 
economic activities, and a shock generated in one region may rapidly and extensively 
propagate to other regions across national borders in an unforeseeable manner. 

Against this backdrop, we propose a novel approach to construct a risk indicator 
for firms’ business operation, especially in the global context, by mapping the degree of 
geographical concentration of supply chains. This is done along a line of traditional 
techniques in input-output economics known as the “key sector analysis”, yet with 
methodological augmentation by a compatible analytical framework in the network 
theory.  

The novelty of the paper rests on our claim that we measure concentration risks 
in terms of the frequency that a particular supply chain passes through a high-risk 
region, as opposed to the conventional approach based on a volume concept. If the 
analysis is directed to the issues of supply chain disruptions (such as natural disasters 
or geopolitical conflicts), then the measurement will reveal the degree of supply chain 
vulnerability to unpredicted incidents in the region of analytical concerns. 

The paper is structured as follows. The next section presents literature review 
with respect to the relevant methodologies, showing how our approach differs from the 
                                                   
1 For an overview of GVC studies, see Inomata (2017), or, in Japanese, Inomata (2019). 
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previous studies. The third section introduce the basic model and the mathematical 
definitions of the metrics. The fourth section presents analytical examples on Japan and 
China using a multi-country input-output table, while the fifth section suggests some 
possible extensions of the research. The final section concludes.  
 

2. Literature review 
 
One of the strengths of the input-output analysis rests on the use of harmonized 

information on sectoral linkages embedded in input-output tables. The values of 
intermediate transaction in the table can be considered as materialization of inter-
connectedness between industrial sectors, from which a multitude of linkage measures 
have been devised so far. The key sector analysis is based on these sectoral linkage 
metrics, as a certain sector can be regarded as a “key” if it is more connected than others 
and hence able to inflict a larger impact on the economy. 

Consider an n-sector economy whose input-output system is represented by the 
following balance equation: 

𝒙𝒙 =

⎝

⎜
⎛

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮
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⎞
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⋮
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=  𝑨𝑨𝑨𝑨+ 𝒚𝒚 
… (1) 

where 𝒙𝒙 = (𝑥𝑥1, … ,𝑥𝑥𝑛𝑛)′ is an (𝑛𝑛 × 1)  vector with its elements corresponding to a total 
output of each sector, 𝒚𝒚 =  (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛)′ is an (𝑛𝑛 × 1) vector containing final demands for 
products of each sector, and 𝑨𝑨 is an (𝑛𝑛 × 𝑛𝑛) input coefficient matrix which represents the 
amounts of intermediate inputs from a row sector directly used for a unit production by 
a column sector. Then, we have 𝒙𝒙 = 𝑨𝑨𝑨𝑨 + 𝒚𝒚 ⇔  (𝑰𝑰 − 𝑨𝑨)𝒙𝒙 = 𝒚𝒚 ⇔  𝒙𝒙 = (𝑰𝑰 − 𝑨𝑨)−1𝒚𝒚 where 𝑰𝑰 is 
an (𝑛𝑛 × 𝑛𝑛)  identity matrix. Here, we denote by 𝑳𝑳 = (𝑰𝑰 − 𝑨𝑨)−1 = 𝑰𝑰 + 𝑨𝑨 + 𝑨𝑨2 +⋯  the 
Leontief inverse matrix which represents the amounts of intermediate inputs from a row 
sector used for a unit production by a column sector, both directly and indirectly (i.e., 
through the higher-order tiers for sourcing production inputs). 

Accordingly, if we look at the Leontief inverse matrix in the column-wise direction, 
it shows how much demands each sector is able to stimulate for the economy, while, in 
the row-wise direction, how much supplies are needed from each sector by the economy. 
So, by comparing the magnitudes of sectors’ column totals (backward linkages) or row 
totals (forward linkages), we can identify which sector is most influential, or a key, to the 
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economy as a whole.2 
The key sector analysis has a long history in input-output economics, dating back 

to the late 1950s (Rasmussen (1957), Hirschman (1958), Chenery and Watanabe (1958)). 
The major advancement from the traditional approach was observed a decade later, 
when the Hypothetical Extraction Method (HEM) was proposed and explored. The basic 
idea of the method is that we consider a “hypothetical” input-output system in which a 
sector in question is artificially suppressed, and thereby measure the importance of this 
suppressed sector for the entire system by comparing the performances of the actual 
economy (with the sector) and that of the hypothetical economy (without the sector). 

Specifically, let 𝑨𝑨�(𝑡𝑡)
     be a hypothetical input coefficient matrix such that its 

elements 𝑎𝑎�(𝑡𝑡)𝑖𝑖𝑖𝑖
      =  0 if either 𝑖𝑖 = 𝑡𝑡 or 𝑗𝑗 = 𝑡𝑡 while 𝑎𝑎�(𝑡𝑡)𝑖𝑖𝑖𝑖

      = 𝑎𝑎𝑖𝑖𝑖𝑖 otherwise. The HEM impact 
for sector 𝑡𝑡 is defined as the difference in the outputs of the actual economy and the 
hypothetical economy; that is,  
𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡) =  𝒊𝒊′𝑳𝑳𝑳𝑳 − 𝒊𝒊′𝑳𝑳�(𝑡𝑡)

    𝒚𝒚 = 𝒊𝒊′(𝑳𝑳 − 𝑳𝑳�(𝑡𝑡)
    )𝒚𝒚 

…(2) 
where 𝑳𝑳�(𝑡𝑡)

     is the Leontief inverse matrix of 𝑨𝑨�(𝑡𝑡)
     and 𝒊𝒊′ is a row summation vector. 

Early developers of the HEM are Paelinck, de Caevel, and Degueldre (1965), 
Strassert (1968), and Schultz (1976). Temurshoev (2009, 2010) extend the method for 
group-wise identification of key sectors, while Dietzenbacher and Lahr (2013) develop it 
in a more generalized framework.  

The HEM was first brought into the international context by Dietzenbacher et 
al. (1993) which use a multi-country input-output tables for selected EU countries. The 
multi-country analysis is further elaborated in Dietzenbacher, van Burken, Kondo (2019) 
in which the problem of extracting one or more sectors in a closed input-output system 
(leading to “imports from Mars”) is dealt with by explicitly considering the substitution 
of extracted sector’s inputs with those from third countries.  

Recent applications of the HEM to international trade are found in the topics of 
global value chains. Los et al. (2016) and Los and Timmer (2018) propose a simple yet 
precise interpretation of gross export decomposition into value-added sources, which 
shed a new light on the earlier decomposition methodologies. In this vein, Miroudot and 
Ye (2021) demonstrate a comprehensive HEM approach to gross export decomposition, 
which provides a common platform for quantifying different notions of value-added 
double-counting within a single accounting framework.  

                                                   
2 The earliest literature in the field used input coefficient matrices, rather than the Leontief inverse 
matrices, to derive forward/backward linkages. Also, the Leontief inverse matrix was subsequently 
replaced by the Ghosh inverse matrix for the calculation of forward linkages. 
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Another important strand of the HEM application is seen in the field of 
environmental economics. The identification of key sectors which impose the largest 
negative impact on the environment is crucial for designing policy tools that effectively 
reduce greenhouse gas emissions (Lenzen, 2003). In this spirit, the HEM is applied to 
environmentally extended input–output models of Italy (Ali, 2015) and of China (Wang 
et al., 2013; Zhao et al., 2016) to measure the CO2 emission linkages in domestic supply 
chains. Using a multi-country input–output model, Hertwich (2021) quantifies the levels 
of greenhouse gas emissions and global carbon footprint of material production. 

Closer to the topic of our current interest, Dietzenbacher and Miller (2015) 
allude to the possibility of applying the HEM to impact assessment of natural hazards, 
by referring to the preceding study by Muldrow and Robinson (2014) on the 2008 Cedar 
Rapids Flood in the United States. Likewise, Xia et al. (2019) evaluate a specific case of 
IT service shutdown during the 2015 York flood in the UK using the HEM. 

Our present paper is differentiated from these foregoing studies in several 
respects. The primary focus of the previous literature is directed either to the 
identification of most influential sectors for economic/environmental amelioration, to 
structural decomposition of production systems for an accounting diagnosis, or to 
posterior impact assessment of a specific natural hazard. By contrast, we aim to apply 
the key sector analysis to precautionary risk management of global supply chains. The 
recognition of potential “choke points” in production networks as key sectors, and the 
evaluation of associated risks in terms of geographical concentration of supply chains, 
are what distinguish this paper from others in regard to research motivation, and what 
necessitate the exploration of an unorthodox approach, which is unfolded below. 

In the perspective of risk analyses, there are a volume dimension and a 
frequency dimension for risk assessment. For example, the chances that our families get 
infected with virus will be high, either because they go to a risky place altogether at once, 
or even just one of them goes, he/she visits there frequently. Or, perhaps even more 
straightforward analogy is that events of earthquake are reported and analyzed with 
respect to both the magnitude and the frequency of occurrence. 

Paraphrasing it in our context, a supply chain is considered highly exposed to a 
specific country risk, if its product contains a significant volume of value-added sourced 
from the country in question, or if the production activities along the supply chain involve 
frequent engagement with the country’s industrial sectors. The first factor is self-evident, 
but the second factor is also important because it relates to the probability aspect of how 
likely the supply chain is caught by contingencies in the country of concerns. The 
traditional key sector analysis, however, can only address the volume-wise scale of inter-
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sectoral spillovers, be it backward/forward linkages or the HEM. It is therefore unable 
to capture in isolation these dual attributes ― volume and frequency ― of concentration 
risks. 

With this in mind, the following section demonstrates a method to quantify 
supply chain concentration in the frequency dimension, which is expected to serve as a 
complementary metric to the traditional volume measures of geographical concentration. 

 
 

3. Basic model and the definition of the indicator 
 
The Pass-through Frequency (PTF) presents the average number of times that 

a particular supply chain passes through a target sector in a given production system. It 
is built upon a property of the Structural Betweenness Centrality developed in Liang et 
al. (2016) as one form of key sector analyses. 

Backward propagation of a final demand impact in a (𝑘𝑘 − 1) stage path is 
presented as follows 
 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘  𝑦𝑦𝑠𝑠𝑘𝑘  

…(3) 
where  𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖+1 is an input coefficient from sector 𝑠𝑠𝑖𝑖 to sector 𝑠𝑠𝑖𝑖+1, and  𝑦𝑦𝑠𝑠𝑘𝑘  is a final demand 
for products of sector 𝑠𝑠𝑘𝑘. Suppose that the target sector 𝑡𝑡 is one of intermediary sectors 
𝑠𝑠𝑖𝑖  (𝑖𝑖 = 2,3,4, … ,𝑘𝑘 − 1)  along the path. Let 𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑙𝑙  be the upstream sequence of 𝑙𝑙 
sectors in relation to sector 𝑡𝑡 and 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚 be the downstream sequence of 𝑚𝑚 sectors 
in relation to sector 𝑡𝑡, where 𝑙𝑙 + 𝑚𝑚 = 𝑘𝑘 − 1 and 𝑢𝑢𝑙𝑙+1 = 𝑑𝑑0 = 𝑡𝑡. Then, the (𝑘𝑘 − 1) stage path 
including sector 𝑡𝑡 can be represented as 𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑙𝑙 , 𝑡𝑡, 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚 and the Equation (3) 
is reformulated as 
 𝑎𝑎𝑢𝑢1𝑢𝑢2  𝑎𝑎𝑢𝑢2𝑢𝑢3 …  𝑎𝑎𝑢𝑢𝑙𝑙−1𝑢𝑢𝑙𝑙  𝑎𝑎𝑢𝑢𝑙𝑙𝑡𝑡  𝑎𝑎𝑡𝑡𝑡𝑡1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚 

…(4) 
The structural path of the impact propagation from sector 𝑑𝑑𝑚𝑚 to sector 𝑡𝑡 is given by the 
right half of Equation (4), 𝑎𝑎𝑡𝑡𝑑𝑑1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚, and hence the total impact of all paths 
running up to that point is calculated as:  

� � …� �𝑎𝑎𝑡𝑡𝑑𝑑1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚�𝑑𝑑𝑚𝑚−1𝑑𝑑2𝑑𝑑1
 

= � �𝑎𝑎𝑡𝑡𝑡𝑡1  𝑎𝑎𝑑𝑑1𝑑𝑑2 … 𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚�𝑑𝑑1,…,𝑑𝑑𝑚𝑚−1

 

…(5) 
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Then, the further propagation from sector 𝑡𝑡 for the remaining path up until 
sector 𝑢𝑢1 is the higher-order backward propagation of Equation (5) commencing from 
sector 𝑡𝑡 ; i.e.,  𝑎𝑎𝑢𝑢1𝑢𝑢2  𝑎𝑎𝑢𝑢2𝑢𝑢3 …  𝑎𝑎𝑢𝑢𝑙𝑙−1𝑢𝑢𝑙𝑙𝑎𝑎𝑢𝑢𝑙𝑙𝑡𝑡 ⋅ ∑ �𝑎𝑎𝑡𝑡𝑑𝑑1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚�𝑑𝑑1,…,𝑑𝑑𝑚𝑚−1 . Accordingly, 
the total impact delivered along all paths running through the entire sequence from 
sector 𝑑𝑑𝑚𝑚 to sector 𝑢𝑢1 via sector 𝑡𝑡 is calculated as: 

� � 𝑎𝑎𝑢𝑢1𝑢𝑢2   𝑎𝑎𝑢𝑢2𝑢𝑢3 …  𝑎𝑎𝑢𝑢𝑙𝑙−1𝑢𝑢𝑙𝑙  𝑎𝑎𝑢𝑢𝑙𝑙𝑡𝑡 ⋅� �𝑎𝑎𝑡𝑡𝑑𝑑1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚�𝑑𝑑1,…,𝑑𝑑𝑚𝑚−1

�
𝑢𝑢2,…,𝑢𝑢𝑙𝑙

 

=  �� � 𝑎𝑎𝑢𝑢1𝑢𝑢2  𝑎𝑎𝑢𝑢2𝑢𝑢3 …  𝑎𝑎𝑢𝑢𝑙𝑙−1𝑢𝑢𝑙𝑙𝑎𝑎𝑢𝑢𝑙𝑙𝑡𝑡�𝑢𝑢2,…,𝑢𝑢𝑙𝑙
��� �𝑎𝑎𝑡𝑡𝑑𝑑1  𝑎𝑎𝑑𝑑1𝑑𝑑2 …𝑎𝑎𝑑𝑑𝑚𝑚−1𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚�𝑑𝑑1,…,𝑑𝑑𝑚𝑚−1

� 

…(6) 
Meanwhile, it is known that  [𝑨𝑨ℎ]𝑖𝑖𝑖𝑖 , an element of hth-power of an input 

coefficient matrix 𝑨𝑨, indicates the total amount of impacts delivered from sector j to 
sector i for all paths with a length of h (i.e., with h times iteration of propagations). This 
property of an input coefficient matrix allows reformulation of Equation (6) as: 
[𝑨𝑨𝑙𝑙]𝑢𝑢1𝑡𝑡 ⋅  [𝑨𝑨𝑚𝑚]𝑡𝑡𝑑𝑑𝑚𝑚 𝑦𝑦𝑑𝑑𝑚𝑚 . 

…(7) 
Specifically, the impact transmission through the shortest possible path, with only one-
shot propagation for each of the upstream and downstream sequences (i.e., 𝑙𝑙 = 𝑚𝑚 = 1, the 
propagation path: 𝑑𝑑1 𝑡𝑡  𝑢𝑢1), can be presented as follows: 
[𝑨𝑨1]𝑢𝑢1𝑡𝑡 ⋅  [𝑨𝑨1]𝑡𝑡𝑑𝑑1  𝑦𝑦𝑑𝑑1 
= 𝑎𝑎𝑢𝑢1𝑡𝑡 ⋅ 𝑎𝑎𝑡𝑡𝑑𝑑1  y𝑑𝑑1 

…(8) 
Finally, we consider every possible combination of an upstream path and a 

downstream path with different lengths: 𝑙𝑙-stage path for the upstream sequence, and 𝑚𝑚-
stage path for the downstream sequence, which leads to the following specification of 
total impacts delivered through all paths via sector 𝑡𝑡 for respective supply chains.  

� � �𝑨𝑨𝒍𝒍 𝑱𝑱(𝑡𝑡)𝑨𝑨𝒎𝒎 𝒚𝒚��
∞

𝑚𝑚=1

∞

𝑙𝑙=1
 

=  �� 𝑨𝑨𝒍𝒍
∞

𝑙𝑙=1
� 𝑱𝑱(𝑡𝑡) �� 𝑨𝑨𝒎𝒎

∞

𝑚𝑚=1
�𝒚𝒚� 

= (𝑳𝑳 − 𝑰𝑰) 𝑱𝑱(𝑡𝑡) (𝑳𝑳 − 𝑰𝑰) 𝒚𝒚�    
…(9) 

where 𝒚𝒚� is an (nxn) diagonal matrix containing final demands for its diagonal elements 
and zeros (0s) elsewhere,  𝑱𝑱(𝑡𝑡) is an (nxn) matrix containing 1 for (𝑡𝑡, 𝑡𝑡)-th element and 
zeros (0s) elsewhere, and 𝑳𝑳 − 𝑰𝑰 = 𝑳𝑳𝑳𝑳 = 𝑨𝑨𝑨𝑨 =  𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟑𝟑 + ⋯. 
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Now, Equation (9) shows the entire set of impact propagations along every path 
that goes through the target sector 𝑡𝑡. Importantly, it is possible that sector 𝑡𝑡 appears 
multiple times along a path. This means that more than one of the sectors 𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑙𝑙 ,

𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚 in Equation (4) can be sector 𝑡𝑡. When this is the case, note that Equation (9) 
performs multiple-counting of an impact delivered through the corresponding path by 
the same amount. Why? This is because each sector 𝑡𝑡 along the path defines a specific 
pair of the upstream/downstream sequences, and each of these pairs additionally counts 
the identical amount of impact under Equation (9); see Appendix A for an illustrative 
example. 

In general, multiple emergences of target sector 𝑡𝑡  along a path result in 
multiple-counting of the identical amounts of impacts by the number of sector’s 
emergence. Upon this ground, and in light of the definition given in Liang et al. (2016),3 
Equation (9) can be expressed as 

� � � 𝑐𝑐(𝑡𝑡) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘  𝑦𝑦𝑠𝑠𝑘𝑘 �𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞

𝑘𝑘=3
 

…(10) 
where 𝑐𝑐(𝑡𝑡) is the number of times that the sector 𝑡𝑡 appears on a particular backward 
linkage path 𝑠𝑠𝑘𝑘 → 𝑠𝑠𝑘𝑘−1 → ⋯ → 𝑠𝑠3 → 𝑠𝑠2 → 𝑠𝑠1 specified by the multiplicand on the right, i.e., 
𝑐𝑐(𝑡𝑡) = |{ 𝑗𝑗 |𝑠𝑠𝑗𝑗 = 𝑡𝑡} ∖ {1,𝑘𝑘}|. The summation ∑ (∙)𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1  is to embrace every combination of 
intermediary sectors 𝑠𝑠𝑖𝑖  (𝑖𝑖 = 2,3,4, … ,𝑘𝑘 − 1)  for a path with the length of (𝑘𝑘 − 1) , and 
∑ (∙)∞
𝑘𝑘=3  is to consider every path with a different length of more than 2 (i.e., 𝑘𝑘 ≥ 3). 

  
Capitalizing on this property, we propose and define the Pass-through Frequency of 

an (𝑖𝑖, 𝑗𝑗) supply chain for sector 𝑡𝑡 as: 

𝑓𝑓(𝑡𝑡)𝑖𝑖𝑖𝑖
=
�𝑳𝑳 𝑱𝑱(𝑡𝑡)𝑳𝑳 −  𝑱𝑱(𝑡𝑡) �

𝑖𝑖𝑖𝑖

[𝑳𝑳 − 𝑰𝑰]𝑖𝑖𝑖𝑖
 

… (11) 
Note that, unlike Structural Betweenness Centrality, we use 𝑳𝑳 instead of 𝑳𝑳 − 𝑰𝑰 in the 
numerator; this is to allow for the emergence of target sector 𝑡𝑡 at either/both of the 
terminal points of a path, i.e., 𝑐𝑐(𝑡𝑡) = �� 𝑗𝑗 � 𝑠𝑠𝑗𝑗 = 𝑡𝑡 �� (Tokito, et al. 2021). Also, the terms  𝑱𝑱(𝑡𝑡) 

and 𝑰𝑰 are respectively subtracted from the numerator and the denominator in order to 
negate the values corresponding to the initial final demands, which are analytically 
irrelevant to identifying the structure of the networks. 

                                                   
3 The specification in Liang et al. (2016) uses a different notational system. 
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By analogy to Equation (10), the PTF can be alternatively expressed in the form 
of a structural path such that: 

𝑓𝑓(𝑡𝑡)𝑠𝑠1𝑠𝑠𝑘𝑘
=
𝑐𝑐(𝑡𝑡)𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 + ∑ ∑ � 𝑐𝑐(𝑡𝑡) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘�𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞
𝑘𝑘=3

[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘
 

= 𝑐𝑐(𝑡𝑡) ⋅
𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘

[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘
+� � �𝑐𝑐(𝑡𝑡) ⋅

 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘
[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘

�
𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞

𝑘𝑘=3
 . 

 
… (12) 

Since the denominator [𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘  is the total amount of impact propagations from 𝑠𝑠𝑘𝑘 to 
𝑠𝑠1 , the multiplicands 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 [𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘⁄  and �𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘� [𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘�  give a 
share of the impact delivered through a particular backward path 𝑠𝑠𝑘𝑘 → 𝑠𝑠1 (single-stage 
path) or 𝑠𝑠𝑘𝑘 → 𝑠𝑠𝑘𝑘−1 → ⋯ → 𝑠𝑠3 → 𝑠𝑠2 → 𝑠𝑠1(multi-stage path). 

Accordingly, Equation (12) shows that the PTF is equivalent to a weighted 
average of 𝑐𝑐(𝑡𝑡), an integer indicating the number of times that the target sector 𝑡𝑡 appears 
in a particular (𝑠𝑠1, 𝑠𝑠𝑘𝑘) path, using the aforementioned impact shares as weights. In effect, 
the metric indicates the frequency that a particular supply chain engages with the target 
sector through the operation of a given production system.4  

The above specification of the indicator offers the following analytical benefits: 
i) It is possible to calculate a value for a supply chain connecting any two sectors, 
ii) The value can be calculated from only one data source: an input-output table, 
iii) Given the Leontief inverse matrix of an input-output table, the value can be 
computed in a constant time, and hence the computational cost is low.5 
iv) The indicator has a set of weights as a built-in decay parameter in an economically 
meaningful way, so that the value will converge. 

Regarding point iv), let us consider a pair of (𝑠𝑠1 , 𝑠𝑠𝑘𝑘) paths with different lengths 
yet with the same number of times that the target sector appears along the way. 
Apparently, the longer path has lower density of target emergence than the shorter path, 
and hence it should be assigned with a smaller weight in calculating the value of the 
indicator. The impact shares as weights serve for this purpose since an impact becomes 
smaller as it goes along a path for higher-order propagations, thanks to the property of 
an input coefficient ( 𝑎𝑎𝑖𝑖𝑖𝑖 < 1). 
                                                   
4  The PTF has a similar structure to the Average Propagation Lengths (APL) proposed by 
Dietzenbacher et al. (2005). The APL measures a length of a supply chain connecting a pair of industrial 
sectors, and defined as a weighed average of the number of propagations using impact shares as weights. 
Specifically, 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 =  [𝑳𝑳𝑨𝑨𝑨𝑨]𝑖𝑖𝑖𝑖 [𝑳𝑳 − 𝑰𝑰]𝑖𝑖𝑖𝑖⁄  =   [1𝑨𝑨1 + 2𝑨𝑨2 + 3𝑨𝑨3 + ⋯ ]𝑖𝑖𝑖𝑖 [𝑳𝑳 − 𝑰𝑰]𝑖𝑖𝑖𝑖�  = [∑ ℎ𝑨𝑨ℎ∞

ℎ=1 ]𝑖𝑖𝑖𝑖 [𝑳𝑳 − 𝑰𝑰]𝑖𝑖𝑖𝑖�  = 
∑ �ℎ ⋅ �[𝑨𝑨ℎ]𝑖𝑖𝑖𝑖 [𝑳𝑳 − 𝑰𝑰]𝑖𝑖𝑖𝑖� ��∞
ℎ=1 , where h is the number of impact propagations from sector 𝑗𝑗 to sector 𝑖𝑖. 

5 Since  𝑱𝑱(𝑡𝑡)  is an (nxn) matrix containing 1 for (𝑡𝑡 , 𝑡𝑡 )-th element and zeros (0s) elsewhere, we can 
explicitly denote each (𝑖𝑖, 𝑗𝑗)-element of 𝑳𝑳𝑱𝑱(𝑡𝑡)𝑳𝑳 as 𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝑡𝑡𝑡𝑡. 
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Analogously to the PTF for a sector, we can also consider the Pass-through 
Frequency for a transaction, which indicates the frequency that a particular supply chain 
engages in the target transaction through the operation of a given production system. 
The definition is similar to the one for the sectoral model, i.e., the average number of 
times that a supply chain passes through a target transaction specified by a particular 
element in an input-output matrix. Based on the Structural Betweenness Centrality for 
a transaction proposed by Hanaka et al. (2017), the PTF for a transaction can be 
formulated as follows: 

  

𝑓𝑓(𝑡𝑡1,𝑡𝑡2)𝑠𝑠1𝑠𝑠𝑘𝑘
=
�𝑎𝑎𝑡𝑡1𝑡𝑡2𝑳𝑳 𝑱𝑱(𝑡𝑡1,𝑡𝑡2)𝑳𝑳 �

𝑠𝑠1𝑠𝑠𝑘𝑘
[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘

 , 

… (13) 
where 𝑱𝑱(𝑡𝑡1,𝑡𝑡2)  is an (nxn) matrix containing 1 for ( 𝑡𝑡1 , 𝑡𝑡2 )-th element and zeros (0s) 

elsewhere; see Appendix B for a detailed exposition of the transactional model. 
Using this transactional model, we further demonstrate that impact 

propagations of a particular supply chain can be decomposed in accordance with the 
number of times that the transaction (𝑡𝑡1 , 𝑡𝑡2) appears on each propagation path. Define 
𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1, 𝑡𝑡2, 𝑠𝑠𝑘𝑘)  as the total amount of impact propagations from 𝑠𝑠𝑘𝑘  to 𝑠𝑠1  such that 
transaction (𝑡𝑡1 , 𝑡𝑡2) appears exactly 𝑟𝑟 times along the paths. Also, let 𝑨𝑨(𝑡𝑡1,𝑡𝑡2) be a matrix 
such that its elements 𝑎𝑎(𝑡𝑡1,𝑡𝑡2)𝑖𝑖𝑖𝑖

      =  𝑎𝑎𝑖𝑖𝑖𝑖 if 𝑖𝑖 = 𝑡𝑡1 and 𝑗𝑗 = 𝑡𝑡2 while 𝑎𝑎(𝑡𝑡1,𝑡𝑡2)𝑖𝑖𝑖𝑖
      = 0 otherwise, and 

𝑨𝑨�(𝑡𝑡1,𝑡𝑡2)
    = 𝑨𝑨 − 𝑨𝑨(𝑡𝑡1,𝑡𝑡2)  be a hypothetical input coefficient matrix with respect to (𝑡𝑡1 , 𝑡𝑡2) . 

Then, 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1, 𝑡𝑡2, 𝑠𝑠𝑘𝑘) can be formulated as: 

𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1, 𝑡𝑡2, 𝑠𝑠𝑘𝑘) = �
�𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)

    − 𝑰𝑰�
𝑠𝑠1𝑠𝑠𝑘𝑘

                                           𝑟𝑟 = 0

�(𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    𝑨𝑨(𝑡𝑡1,𝑡𝑡2))

𝑟𝑟 𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    �

𝑠𝑠1𝑠𝑠𝑘𝑘
                   𝑟𝑟 ≥ 1

 

… (14) 
where  𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)

    = �𝑰𝑰 − 𝑨𝑨�(𝑡𝑡1,𝑡𝑡2)
    �−1 is the Leontief inverse matrix of 𝑨𝑨�(𝑡𝑡)

    .  
 
Now, because 𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)

     is derived from the hypothetical input-output system 

extracting (𝑡𝑡1, 𝑡𝑡2) transaction, an element �𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    − 𝑰𝑰�

𝑠𝑠1𝑠𝑠𝑘𝑘
 represents the total amount of 

impact propagations from 𝑠𝑠𝑘𝑘 to 𝑠𝑠1 which do not pass through the transaction (𝑡𝑡1 , 𝑡𝑡2); i.e., 
the case of 𝑟𝑟 = 0.  

For 𝑟𝑟 ≥ 1, by contrast, 𝑨𝑨𝑡𝑡1𝑡𝑡2 appears exactly 𝑟𝑟 times in the matrix multiplication 

of ��𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    𝑨𝑨𝑡𝑡1𝑡𝑡2�

𝑟𝑟 𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    �

𝑠𝑠1𝑠𝑠𝑘𝑘
. This is equivalent to saying that the input coefficient 𝑎𝑎𝑡𝑡1𝑡𝑡2, 
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which corresponds to the target transaction (𝑡𝑡1, 𝑡𝑡2), appears 𝑟𝑟 times in each (𝑠𝑠1, 𝑠𝑠𝑘𝑘) path 

under ��𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    𝑨𝑨𝑡𝑡1𝑡𝑡2�

𝑟𝑟 𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)
    �

𝑠𝑠1𝑠𝑠𝑘𝑘
, given the properties of 𝑨𝑨(𝑡𝑡1,𝑡𝑡2) and 𝑳𝑳�(𝑡𝑡1,𝑡𝑡2)

    . 

Accordingly, 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2 , 𝑠𝑠𝑘𝑘) as defined above presents the total amount of 
impact propagations from 𝑠𝑠𝑘𝑘 to 𝑠𝑠1 such that transaction (𝑡𝑡1 , 𝑡𝑡2) appears exactly 𝑟𝑟 times, 
for both cases of 𝑟𝑟 = 0 and 𝑟𝑟 ≥ 1; see Appendix C for the calculation result of a case study 
on China’s ICT/electronics industry. 

 
 
4. Analytical example (Japan and China) 
 

In this section, we present two analytical examples, on Japan and China, using 
the preliminary data of the forthcoming Inter-Country Input-Output Tables, the 2021 
release, constructed by the Organisation for Economic Co-operation and Development 
(OECD). The database is chosen because of its high degree of harmonization and 
consistency among the constituent national input-output tables, which are sourced only 
from the official statistics of individual countries. The latest version, to be published in 
2021, is based on 36 industries (concordant with ISIC Rev.4), covering 67 countries/ 
regions for the years from 1995 to 2018, allowing comprehensive time and geographical 
coverage for GVC analyses; see Appendix D for the description of the data, industrial 
sector classification and countries of reference.  
 
[Japan] 

Japan is well-recognized as a country prone for natural hazards. Earthquake in 
Japan accounts for 17.9% of all cases (larger than magnitude 6.0) reported all over the 
world during 2011-2020, even though its national territory occupies less than 1% of the 
total land area on the globe (River Databook, 2021). 

In particular, the Great East Japan Earthquake in 2011 caused unprecedented 
economic and social damages to the country, exacerbated by the multiple chained 
disasters of tsunami as well as the breakdown of nuclear power stations. Not to mention 
the tragic loss of human lives, the disaster’s economic impact on global supply chains 
has equally gathered world-wide attention. For example, the devastating physical 
damage on local factories of Renesas Electronics, a car parts supplier, led to a critical 
shortage of micro-computers for cars and abruptly disactivated production lines of the 
automotive industries, both in Japan and foreign countries alike.  
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It is not only about the scale but also the scope of natural disasters that reveals 
Japan’s vulnerable position: earthquake, tsunami, volcanic eruption, typhoon, flood, 
rainfall and snow damages …, caused by a very complex interaction of geophysical and 
meteorological conditions that the country rests on. Accordingly, we chose Japan as one 
of the target regions for the supply chain risk analysis. 
 
[China] 

Mounting geopolitical tension between the United States and China adds 
another aspect to supply chain risks. China has achieved remarkable economic growth 
in the last few decades and became a global manufacturing center, dubbed as “the 
Factory of the World”. Its economic influence was vividly demonstrated by a bitter 
experience in the wake of the Covid-19 outbreak when production activities in many 
countries came to a halt as parts supplies from the country were suddenly suspended.  

In the post-pandemic world, the US-China confrontation is considered to 
escalate, and government intervention into business activities is likely to be modus 
operandi in China, as precedented in the form of export controls on key strategic 
materials or forced technological transfers from foreign affiliates operating within the 
country. Global firms should be well prepared for its geopolitical implication on their 
supply chain management. 

Table 1 juxtaposes metrics of the PTF and Trade in Value-Added (TiVA: see 
below) for 50 cross-border supply chains ranked by the PTF index, with Japan and China 
(inclusive of “Hong Kong, China”) being set as a target region, respectively.6 

The PTF index is derived from the elements in the aggregate PTF matrix, 
benchmarked against the sample average. The aggregate matrix is a linear sum of 36 
PTF matrices, each of which is individually calculated for one of 36 sectors in 
Japan/China, using a multi-country input-output table. The index therefore indicates 
how frequent the corresponding supply chains may engage with any of the 36 industrial 
sectors located in the target region. 

                                                   
6 Here in this table, we only consider the supply chains that do not have a target region at either 
terminal point of a path, in order to highlight the region’s position as an indirect influencer of supply 
chains. Also, the supply chains carrying less than 500 million USD of value-added have been truncated 
from the sample set. 
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Table 1: Top 50 PTF index ranking of individual cross-border supply chains: 2018 
 

[1-a: target region = Japan]                       [1-b: target region = China] 

 
Source: Calculated by the authors 

Rank
Final product 
producer ( j )

Value-added 
source ( i )

PTF 
index 
Japan

 TiVA_ij 
(million 

USD) 
Rank

Final product 
producer ( j )

Value-added 
source ( i )

PTF 
index 
China

 TiVA_ij 
(million 

USD) 
1 CHN_41T43 MYS_05T06 1.37 640       1 USA_41T43 KOR_26 5.65 516       
2 CHN_27 AUS_05T06 1.26 523       2 USA_29 TWN_26 5.58 572       
3 CHN_28 AUS_05T06 1.18 1,027   3 USA_84 TWN_26 5.34 685       
4 CHN_41T43 AUS_05T06 1.13 2,440   4 USA_84 KOR_26 5.00 910       
5 KOR_41T43 AUS_05T06 0.92 698       5 USA_29 KOR_26 4.74 842       
6 CHN_41T43 IDN_05T06 0.73 1,145   6 MEX_26 TWN_26 4.42 590       
7 CHN_26 USA_69T82 0.52 1,423   7 USA_29 SAU_05T06 3.28 640       
8 CHN_28 RUS_05T06 0.52 847       8 MEX_26 KOR_26 3.11 1,037   
9 CHN_26 USA_64T66 0.51 577       9 IND_41T43 AUS_07T08 2.27 708       

10 KOR_41T43 AUS_07T08 0.49 618       10 TWN_26 KOR_26 2.12 664       
11 IND_41T43 AUS_07T08 0.47 708       11 KOR_41T43 AUS_07T08 1.88 618       
12 CHN_26 AUS_07T08 0.47 1,143   12 KOR_26 TWN_26 1.63 940       
13 KOR_41T43 RUS_05T06 0.45 542       13 USA_84 JPN_45T47 1.60 855       
14 CHN_27 USA_69T82 0.43 735       14 MYS_26 TWN_26 1.53 620       
15 CHN_41T43 IDN_45T47 0.42 652       15 USA_84 RUS_05T06 1.45 507       
16 CHN_41T43 SGP_45T47 0.40 852       16 USA_29 KOR_45T47 1.37 539       
17 CHN_28 USA_69T82 0.40 1,335   17 USA_41T43 SAU_05T06 1.26 2,156   
18 CHN_29 CHL_07T08 0.38 561       18 USA_86T88 JPN_45T47 1.26 547       
19 CHN_26 SGP_45T47 0.38 538       19 CAN_41T43 SAU_05T06 1.20 550       
20 CHN_41T43 RUS_05T06 0.37 2,936   20 USA_45T47 SAU_05T06 1.14 739       
21 IND_41T43 AUS_05T06 0.37 1,525   21 USA_41T43 JPN_45T47 1.12 1,309   
22 CHN_29 USA_69T82 0.37 968       22 IND_41T43 JPN_45T47 1.11 595       
23 USA_84 RUS_05T06 0.36 507       23 KOR_41T43 RUS_05T06 0.93 542       
24 CHN_41T43 CAN_07T08 0.34 778       24 USA_86T88 SAU_05T06 0.91 1,253   
25 CHN_28 USA_64T66 0.33 679       25 VNM_26 KOR_26 0.89 849       
26 CHN_20T21 USA_69T82 0.33 514       26 MEX_26 USA_69T82 0.89 571       
27 CHN_28 USA_20T21 0.33 533       27 USA_29 JPN_69T82 0.86 520       
28 CHN_41T43 CHL_07T08 0.32 2,305   28 USA_29 JPN_45T47 0.85 1,657   
29 CHN_26 USA_49T53 0.32 532       29 JPN_41T43 AUS_07T08 0.85 938       
30 CHN_41T43 USA_69T82 0.31 3,820   30 IDN_41T43 SAU_05T06 0.84 1,178   
31 USA_29 CHN_13T15 0.31 839       31 IND_29 SAU_05T06 0.83 572       
32 CHN_41T43 GBR_69T82 0.30 715       32 JPN_28 AUS_07T08 0.82 509       
33 CHN_41T43 AUS_45T47 0.30 1,542   33 KOR_26 USA_26 0.80 511       
34 CHN_41T43 USA_05T06 0.29 709       34 MEX_29 JPN_45T47 0.74 647       
35 KOR_29 USA_69T82 0.29 508       35 USA_90T96 SAU_05T06 0.72 582       
36 CHN_28 AUS_45T47 0.28 744       36 KOR_29 SAU_05T06 0.70 734       
37 CHN_41T43 AUS_69T82 0.28 918       37 KOR_28 SAU_05T06 0.69 540       
38 CHN_41T43 USA_20T21 0.27 1,567   38 KOR_41T43 USA_45T47 0.66 852       
39 CHN_28 CHL_07T08 0.27 1,452   39 TWN_26 JPN_45T47 0.64 559       
40 CHN_26 USA_45T47 0.27 2,112   40 IND_41T43 USA_45T47 0.64 1,109   
41 TWN_26 CHN_45T47 0.26 511       41 FRA_41T43 SAU_05T06 0.64 773       
42 IND_41T43 CHL_07T08 0.26 778       42 USA_10T12 SAU_05T06 0.63 790       
43 CHN_41T43 USA_64T66 0.26 1,962   43 USA_84 JPN_69T82 0.63 708       
44 IDN_41T43 MYS_05T06 0.26 567       44 IND_13T15 SAU_05T06 0.62 604       
45 CHN_10T12 RUS_05T06 0.25 530       45 USA_41T43 JPN_69T82 0.62 728       
46 CHN_41T43 AUS_35T39 0.25 507       46 TWN_26 SAU_05T06 0.61 734       
47 USA_41T43 CHN_13T15 0.25 722       47 JPN_41T43 RUS_05T06 0.60 687       
48 CHN_20T21 RUS_05T06 0.25 618       48 USA_41T43 DEU_45T47 0.60 619       
49 CHN_49T53 RUS_05T06 0.25 560       49 IDN_41T43 JPN_45T47 0.59 720       
50 CHN_27 USA_45T47 0.25 1,016   50 IND_41T43 SAU_05T06 0.57 2,764   
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By contrast, TiVA metric presents the amounts and sources of value-added 
embodied in final products, which are consumed in various locations in the world through 
international trade. In a matrix form based on a multi-country input-output table, it 
maps out flows of value-added, both within and across the borders, as formulated as 𝒗𝒗�𝑳𝑳𝒚𝒚� 
where 𝒗𝒗� is a diagonal matrix of value-added coefficients (the amount of value-added 
generated by a unit production), 𝑳𝑳 is a multi-country Leontief inverse matrix, and 𝒚𝒚� is a 
diagonal matrix of final demands with a country dimension.  

The shaded entry in Table 1-b, for example, shows that the US car supply chain 
(USA_29) engages with industrial sectors of China in the frequency of 5.58 times higher 
than the average, in order to source 572 million USD of value-added from the 
ICT/electronics equipment industry of Chinese Taipei (TWN_26). Likewise, just below 
the shaded entry, it may deserve a sharp attention of the US policy makers that “Public 
administration and defence; compulsory social security” of the United States (USA_84), 
the-sector-in-charge for the US national security, exhibits high presence of China’s 
industrial sectors in its supply chains for sourcing value-added from the ICT/electronics 
equipment sectors of Chinese Taipei and Korea (TWN_26, KOR_26). 

 
Figure 1 presents relative risk positions of GVC-oriented manufacturing sectors 

in selected industrialized economies. The horizontal axis gives the share of value-added 
sourced from the target region, calculated from the corresponding subset of elements in 
𝒗𝒗�𝑳𝑳  from the TiVA matrix, while the vertical axis is the industry’s total PTF for all 
branches of its supply chains, given by the column sums of the aggregate PTF matrix, 
and indexed against the sample average.7 Dotted lines indicate simple regressions. 

From the perspective of final product producers, TiVA presents how much value 
of their products is attributable to the value-added origin of which country, showing the 
ultimate form of supply chain dependence in volume term. Therefore, the diagram 
depicts the nature of supply chain concentration/dependence of each country-sector pair 
along the volume and frequency dimensions. 
 
 
 
 
 
 

                                                   
7 Note that, unlike Table 1, the selected supply chains here include those which have a target sector at 
an end point of a path. 
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Figure 1 Relative risk positions of GVC-oriented manufacturing sectors: 2018 
 

 

 
Source: Drawn by the authors. 

 
 

The key findings are as follows. 
- By comparing the two panels, the data is more dispersed for China’s case [1-

b], especially towards the top-right corner of the diagram. This shows that the supply 
chains of the selected economies are generally more concentrated in China than in Japan, 
but also the variation therein is larger among individual economies and industries.  

- For Japan’s case [1-a], the industries of Chinese Taipei stand out for being 
dependent on the country, especially with regard to the shares of value-added origins. 

- China’s case reveals that the nature of concentration risks differs between 
advanced economies (Germany, Japan, the United States) and emerging economies 
(Korea, Chinese Taipei). The industrial sectors of the former group tend to be clustered 
in the area above the regression line (volume < frequency), while those of the latter group 
are mostly found below the line (volume > frequency), except for the ICT/electronics 
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equipment sectors of Korea and Chinese Taipei (KOR_26, TWN_26). Namely, the 
advanced economies are more prone for facing the concentration risks in terms of 
frequency rather than volume.  

The last observation can be explained by two simple factors. First, because 
domestic markets and industrial base of advanced economies are sufficiently large, the 
share of foreign value-added in their production activities tends to be small. Second, 
advanced economies accommodate many global firms that organize long and 
sophisticated supply chains with substantial foreign exposure, which is considered to 
increase their engagement frequency with the target region.8 

- Focusing on the ICT/electronics equipment industry, which is now widely 
recognized as a strategic sector in the domain of national security, the supply chains of 
Korea and Chinese Taipei (KOR_26, TWN_26) are most exposed to the concentration 
risks in China, both in terms of volume and frequency. The various diplomatic efforts by 
the US government to “de-couple” the ICT supply chains away from China’s influence 
reflect its bare recognition of such risks through the lens of real-world geopolitics.9  

The US supply chains of the ICT/electronics equipment industry (USA_26) 
presents an interesting case, which is positioned at the top-left corner of the diagram. 
The low concentration of its value-added origin in China may be straightforward 
reflection of the sheer size of the US economy, as well as a classic offshoring practice that 
only low value-added segments of supply chains are transferred abroad. By contrast, the 
high positioning along the vertical axis indicates the frequent exposure of its supply 
chains to the production networks within China’s geographic territory, raising the 
likelihood of getting caught by (natural or human-driven) contingencies in the country. 

In general, the two metrics of geographic concentration in volume term and 
frequency term seem to be positively correlated. However, the above case of the US 
ICT/electronics sector vis-à-vis China suggests that only looking at the volume side may 
lead to significant underestimation of the overall risk in supply chain management. 
 
 
 
 
 
 
                                                   
8 See, however, the point raised in Section 5, (3). 
9  In 2020, the US government successfully persuaded TSMC, the world’s dominant foundry of 
semiconductors from Chinese Taipei, to build a plant in the State of Arizona, while keeping the company 
away from its bilateral transaction with Huawei, a major Chinese mobile phone manufacturer. 
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5. Some extensions 
 

The current research can be developed and extended in several directions. What 
follows is not an exhaustive list of ideas but intended to give an insight for its application 
possibility in the areas of high policy relevance. 

 
(1) “Choke point map” 

In Table 1, we presented a pair of PTF index and TiVA for respective supply 
chain, setting Japan and China as target regions. By doing the same calculation for all 
other countries covered in the multi-country input-output table, it is possible to identify 
a choke point for each supply chain by cross-country comparison of the PTF/TiVA values. 
Such a “choke point map” can be drawn in much higher resolution if the PTF is referred 
to in individual target-sector matrices rather than the aggregate matrix, which enables 
us to define a choke point at the country-sectoral level. 

 
(2) Subregional analyses 

Natural hazards are generally associated with a specific area/subregion of a 
country. More detailed and accurate risk analyses will be possible if we use the 
information of input-output table at the sub-national level. Several efforts have been 
made in the past to construct multi-country input-output tables with subregional 
extensions. For example, Inomata and Meng (2013) introduce the Transnational 
Interregional Input-Output Table for China, Japan, and Korea, constructed by the 
Institute of Developing Economies, JETRO, which links the interregional input-output 
tables of respective countries into a single matrix to account for regional heterogeneity 
within a country in a multi-country framework. The table allows for disaster impact 
analyses across the borders on a region-to-region basis—for example, between Tohoku in 
Japan and Huanan in China. See also Cherubini and Los (2013) for Italy, Dietzenbacher, 
et al. (2013) for Brazil, and Meng, et al. (2013) for China, which embed the respective 
country’s interregional input-output table in the European Commission–funded World 
Input-Output Database (Timmer et al. 2015). 

 
(3) Supply chain lengths and risk exposure 

Against the backdrop of the pandemic and geopolitical tensions, there is an 
increasing concern that a long cross-border supply chains may translate into high 
exposure to foreign disturbances, calling for withdrawal and internalization of supply 
chains by facilitating reshoring of production activities. However, this is a conjecture 
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that should be empirically tested. A metric of supply chain lengths, notably Average 
Propagation Lengths developed by Dietzenbacher et al. (2005), and the PTF can be 
compared for cross-border supply chains to see if there is a significant correlation 
between the two; see Footnote 4. 

 
 

6. Conclusion 
 

In this paper we presented and analyzed new referential statistics for risk 
assessment on geographical concentration of global supply chains. The study’s net 
contribution rests on the development of a metric which indicates geographical 
concentration in terms of the frequency of supply chain engagement with the regions of 
analytical concerns, alongside the traditional approach based on volume measures of 
value-added concentration.  

Japan, a country with a high propensity to encounter natural hazards, and China, 
under a mounting geopolitical tension with the United States, were chosen as target 
regions for the risk assessment. The analysis followed a line of techniques in input-
output economics known as the “key sector analysis”, yet with methodological 
augmentation by a compatible analytical framework in the network theory. Using the 
latest set of multi-country input-output tables constructed by the OECD, the following 
findings were presented. 

The supply chains of the selected industrialized economies are generally more 
concentrated in China than in Japan. The study on China as a target region reveals that 
the nature of concentration risks differs between advanced economies and emerging 
economies, such that the former is more prone for facing frequency risks than volume 
risks, while the opposite is observed for the latter. For Japan as a target region, the 
industries of Chinese Taipei stand out for being dependent on the country, especially 
with regard to the shares of value-added origins. 

Focusing on the ICT/electronics equipment industry, the supply chains of Korea 
and Chinese Taipei are most exposed to the concentration risks in China, both in volume 
and frequency terms. By contrast, the US supply chains presents an interesting case; 
the low concentration of its value-added origin in China may be straightforward 
reflection of the sheer size of the US economy, while its high pass-through frequency 
indicates its frequent exposure to China’s geographic territory, raising the likelihood of 
getting caught by (natural or human-driven) contingencies in the country.  
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In general, the two metrics of geographic concentration in volume term and 
frequency term are positively correlated. However, the above US case suggests that only 
looking at the volume side may lead to significant underestimation of the overall risk in 
supply chain management. 

 
  



21 
 

References 

 
Ali, Y. 2015. “Measuring CO2 Emission Linkages with the Hypothetical Extraction 

Method (HEM),” Ecological Indicators, 54, 171-183. 
Chenery, H.B., Watanabe, T. 1958. “International Comparisons of the Structure of 

Productions,” Econometrica, 4, 487–521.  
Cherubini, L., Los, B. (2013) “Regional Employment Patterns in a Globalizing World: A 

Tale of Four Italies,” Paper presented at the Bank of Italy workshop, Global Value 
Chains: New Evidence and Implications, Rome, June 22. 

Dietzenbacher, E., van Burken, B., Kondo, Y. (2019) “Hypothetical Extractions from a 
Global Perspective,” Economic Systems Research, 31(4), 505–519.  

Dietzenbacher, E., Guilhoto, J., D. Imori. (2013) “The Role of Brazilian Regions in the 
Global Value Chain,” School of Economics, Business and Accounting Working Paper, 
2013–15, University of São Paulo, São Paulo. 

Dietzenbacher, E., Lahr, M. (2013) “Expanding Extractions,” Economic Systems 
Research, 25(3), 341–360. 

Dietzenbacher, E., Linden, J., Steenge, A. (1993) “The Regional Hypothetical extraction 
method: EC Input–Output Comparisons,” Economic Systems Research, 5(2), 185–
206. 

Dietzenbacher, E., Luna, I.R., Bosma, N.S. (2005) “Using Average Propagation Lengths 
to Identify Production Chains in the Andalusian Economy,” Estudios de Economia 
Aplicada, 23 (2), 405–422.  

Dietzenbacher, E., Miller, R.E. (2015) “Reflections on the Inoperability Input-Output 
Model,” Economic Systems Research, 27(4), 478–486. 

Hanaka, T., Kagawa, S., Ono, H., Kanemoto, K. (2017) “Finding Environmentally 
Critical Transmission Sectors, Transactions and Paths in Global Supply Chain 
Networks,” Energy Economics, 68, 44–52. 

Hertwich, E.G. (2021) “Increased carbon footprint of materials production driven by rise 
in investments,” Nature Geoscience, 14, 151–155. 

Hirschman, A.O. (1958) The Strategy of Economic Development, Yale University Press, 
New Haven.  

Inomata, S. (2017) "Analytical frameworks for global value chains: An overview", Global 
Value Chain Development Report 2017, Chapter 1, The World Bank Group, 
Washington D.C. 

Inomata, S. (2019) Global Value Chains, Nikkei BP Publishing, Tokyo (Japanese only). 
Inomata, S., and B. Meng. (2013) “Transnational Interregional Input-Output Tables: An 



22 
 

Alternative Approach to MRIO?” In Sustainability Practitioner’s Guide to Multi-
Regional Input-Output Analysis, edited by J. Murray and M. Lenzen, 33–42. 
Champaign, IL: Common Ground Publishing. 

Lenzen, M. (2003) “Environmentally Important Paths, Linkages and Key Sectors in the 
Australian Economy,” Structural Change and Economic Dynamics, 14, 1–34. 

Liang, S., Qu, S., Xu, M. (2016) “Betweenness-based Method to Identify Critical 
Transmission Sectors for Supply Chain Environmental Pressure Mitigation,” 
Environmental Science & Technology, 50, 1330–1337. 

Los, B., Timmer, M.P. (2018) “Measuring Bilateral Exports of Value Added: A Unified 
Framework,” NBER Working paper, No. 24896. 

Los, B., Timmer, M.P., de Vries, G.J. (2016) “Tracing Value-Added and Double Counting 
in Gross Exports: Comment,” American Economic Review, 106, 1958–1966.  

Meng, B., Wang, Z., Koopman, R. (2013) “How are Global Value Chains Fragmented and 
Extended in China’s Domestic Production Networks?” IDE Discussion Paper Series 
No. 424, Institute of Developing Economies, JETRO, Chiba, Japan. 

Miroudot, S., Ye, M. (2021) “Decomposing Value Added in Gross Exports,” Economic 
Systems Research, 33(1), 67–87.  

Muldrow, M., Robinson, D.P. (2014) “Three Models of Structural Vulnerability: Methods, 
Issues, and Empirical Comparisons,” Paper Presented at the 2014 Annual Meeting 
of the Southern Regional Science Association, San Antonio, TX, USA. 

Paelinck, J., de Caevel, J., Degueldre, J. (1965) “Analyse Quantitative de Certaines 
Phénomènes du Développement Régional Polarisé: Essai de Simulation Statique 
d’Itinéraires de Propagation,” Bibliothèque de l’Institut de Science économique. No. 
7. Problémes de Conversion économique: Analyses Théoriques et études Appliquées, 
M.-Th. Génin, Paris, 341–387. 

Rasmussen, P.N. (1957) Studies in Inter-sectoral Relations, Amsterdam: North-Holland  
River Databook (2021), Ministry of Land, Infrastructure, Transport and Tourism, Japan. 

https://www.mlit.go.jp/river/toukei_chousa/kasen_db/pdf/2021/2-2-4.pdf 
Schultz, S. (1977) “Approaches to identifying key sectors empirically by means of input-

output analysis,” The Journal of Development Studies, 14, 77–196. 
Strassert, G. (1968) “Zur Bestimmung strategischer Sektoren mit Hilfe von Input-

Output-Modellen,” Jahrbücher für Nationalökonomie und Statistik, 182, 211–215. 
Temurshoev, U. (2009) “Hypothetical extraction and fields of influence approaches: 

integration and policy implications,” EERC Working Paper Series 09/06e. 
Temurshoev, U. (2010) “Identifying Optimal Sector Groupings with the Hypothetical 

Extraction Method,” Journal of Regional Science, 50, 872–890. 



23 
 

Timmer, M.P., Dietzenbacher, E., Los, B., Stehrer, R., de Vries, G.J. (2015) “An illustrated 
user guide to the world input–output database: the case of global automotive 
production,” Review of International Economics, 23, 575–605. 

Tokito, S., Kagawa, S., Hanaka, T. (2021) “Hypothetical extraction, betweenness 
centrality, and supply chain complexity,” Economic Systems Research, Forthcoming. 

Wang, Y., Wang, W., Mao, G., Cai, H., Zuo, J., Wang, L., Zhao, P. (2013) “Industrial CO2 
Emissions in China Based on the Hypothetical Extraction Method: Linkage 
Analysis,” Energy Policy, 62, 1238–1244.  

Xia, Y., Guan, D., Steenge, A.E., Dietzenbacher, E., Meng, J., Mendoza Tinoco, D. (2019) 
“Assessing the economic impacts of IT service shutdown during the York flood of 
2015 in the UK.” Proc. R. Soc. A. 475, 20180871. 

Zhao, Y., Liu, Y., Wang, S., Zhang, Z., Li, J. (2016) “Inter-Regional Linkage Analysis of 
Industrial CO2 Emissions in China: An Application of a Hypothetical Extraction 
Method,” Ecological Indicators, 61, 428–437. 

  



24 
 

Appendix A: Multiple-counting of the Structural Betweenness Centrality 
 
Consider three-stage paths (𝑙𝑙 + 𝑚𝑚 = 3) for a three-sector input-output system 

(𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3). The total impact of unit production from sector 𝑠𝑠3 to sector 𝑠𝑠1 is calculated by: 
(𝑨𝑨3)13 

= 𝑎𝑎11𝑎𝑎11𝑎𝑎13  (Path 1:  3→1→1→1)  
+ 𝑎𝑎12𝑎𝑎21𝑎𝑎13  (Path 2:  3→1→2→1) 
+ 𝑎𝑎13𝑎𝑎31𝑎𝑎13  (Path 3:  3→1→3→1) 
+ 𝑎𝑎11𝑎𝑎12𝑎𝑎23  (Path 4:  3→2→1→1)  
+ 𝑎𝑎12𝑎𝑎22𝑎𝑎23  (Path 5:  3→2→2→1)  
+ 𝑎𝑎13𝑎𝑎32𝑎𝑎23  (Path 6:  3→2→3→1) 
+  𝑎𝑎11𝑎𝑎13𝑎𝑎33  (Path 7:  3→3→1→1) 
+ 𝑎𝑎12𝑎𝑎23𝑎𝑎33  (Path 8:  3→3→2→1) 
+ 𝑎𝑎13𝑎𝑎33𝑎𝑎33  (Path 9:  3→3→3→1) 

 
Let us take 𝑠𝑠2 as the target sector. Among the nine paths above, we only have 

to consider those that go through 𝑠𝑠2 in order to calculate the Structural Betweenness 
Centrality, as short-listed in Figure A.10 The table underneath shows the decomposition 
of a respective impact propagation into downstream sequence (DS) and upstream 
sequence (US). Note that Path 5 yields two different DS/US pairs, each corresponding to 
a different border anchored by 𝑠𝑠2.  

 
Figure A: Impact propagation through 𝒔𝒔𝟐𝟐 

 
 p2: 3→1→2→1 p4: 3→2→1→1 p5: 3→2→2→1 p6: 3→2→3→1 p8: 3→3→2→1 

 

     
DS   3→1→2   3→2   3→2   3→2   3→3→2 

US         2→1      2→1→1      2→2→1      2→3→1         2→1 

DS      3→2→2   

US           2→1   

 
 

                                                   
10 The reason is as follows. By referring back to Equation (10), it is seen that if a path does not go 
through the target sector 𝑡𝑡, 𝑐𝑐(𝑡𝑡) is zero (0) by definition, and hence the value for the corresponding path 
also becomes zero. 
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Now, Equation (9) can be expanded as follows. 
(𝑳𝑳 − 𝑰𝑰) 𝑱𝑱(𝒕𝒕)(𝑳𝑳 − 𝑰𝑰) 𝒚𝒚  
= (𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟑𝟑 + ⋯ ) 𝑱𝑱(𝒕𝒕)(𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟑𝟑 +⋯ )𝒚𝒚 
= (𝑨𝑨𝟏𝟏 𝑱𝑱(𝒕𝒕) + 𝑨𝑨𝟐𝟐 𝑱𝑱(𝒕𝒕) + 𝑨𝑨𝟑𝟑 𝑱𝑱(𝒕𝒕) +⋯ )(𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟑𝟑 +⋯ )𝒚𝒚  
=  (𝑨𝑨𝟏𝟏 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟑𝟑 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟏𝟏 +⋯  
  + 𝑨𝑨𝟏𝟏 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟐𝟐 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟐𝟐 + 𝑨𝑨𝟑𝟑 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟐𝟐 +⋯ 
  + 𝑨𝑨𝟏𝟏 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟑𝟑 + 𝑨𝑨𝟐𝟐 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟑𝟑 + 𝑨𝑨𝟑𝟑 𝑱𝑱(𝒕𝒕)𝑨𝑨𝟑𝟑 +⋯ )𝒚𝒚 

It can be seen that the impact 𝑎𝑎12𝑎𝑎22𝑎𝑎23𝑦𝑦3  along Path 5, “3→2→2→1”, is 
captured by the term 𝑨𝑨𝟐𝟐𝑱𝑱(𝑡𝑡)𝑨𝑨𝟏𝟏 𝒚𝒚 when taking the first emergence of 𝑠𝑠2 as a DS/US border, 
and it is also counted in 𝑨𝑨𝟏𝟏𝑱𝑱(𝑡𝑡)𝑨𝑨𝟐𝟐 𝒚𝒚 when taking the second 𝑠𝑠2 as a border; that is, the 
equation double-counts the same amount of impacts when the target sector appears 
twice. Such multiple-counting applies to any combination of downstream/upstream 
sequences for any higher order propagation. 
 
 
Appendix B: Pass-through Frequency for a transaction 

 
Multiple-counting of the identical amounts of impacts in accordance with the 

emergence of (𝑡𝑡1 , 𝑡𝑡2) transaction is formulated as 

�𝑎𝑎𝑡𝑡1𝑡𝑡2𝑳𝑳𝑱𝑱(𝑡𝑡1,𝑡𝑡2)𝑳𝑳�𝑠𝑠1𝑠𝑠𝑘𝑘
 

= 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 + � � � 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘�𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞

𝑘𝑘=3
 

… (B-1) 
where 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) is the number of times that the transaction (𝑡𝑡1 , 𝑡𝑡2) appears in a particular 
backward linkage path. Note that the first term of Equation (B-1) corresponds to a 
linkage path 𝑠𝑠𝑘𝑘 → 𝑠𝑠1 of length 1, while the second term is for the paths with a length of 
more than 2. For the first term, if 𝑠𝑠1 = 𝑡𝑡1  and 𝑠𝑠𝑘𝑘 = 𝑡𝑡2 ,  𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 = 𝑎𝑎𝑡𝑡1𝑡𝑡2; otherwise, 
𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 = 0.  Then, the PTF for transaction (𝑡𝑡1, 𝑡𝑡2) can be formulated as: 

𝑓𝑓(𝑡𝑡1,𝑡𝑡2)𝑠𝑠1𝑠𝑠𝑘𝑘
=
�𝑎𝑎𝑡𝑡1𝑡𝑡2𝑳𝑳 𝑱𝑱(𝑡𝑡1,𝑡𝑡2)𝑳𝑳 �

𝑠𝑠1𝑠𝑠𝑘𝑘
[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘

  

=
𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 + ∑ ∑ � 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘�𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞
𝑘𝑘=3

[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘
 

= 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅
𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘

[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘
+� � �𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅

 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘
[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘

�
𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞

𝑘𝑘=3
 

… (B-2) 
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By analogy to the sectoral model, the transactional PTF is equivalent to a 
weighted average of 𝑐𝑐(𝑡𝑡1,𝑡𝑡2), an integer indicating the number of times that the target 
transaction (𝑡𝑡1 , 𝑡𝑡2) appears in a particular (𝑠𝑠1, 𝑠𝑠𝑘𝑘) path, using impact shares as weights. 

Further to this, let 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2 , 𝑠𝑠𝑘𝑘) be the total amount of impact propagations 
from 𝑠𝑠𝑘𝑘 to 𝑠𝑠1 such that transaction (𝑡𝑡1, 𝑡𝑡2) appears in (𝑠𝑠1, 𝑠𝑠𝑘𝑘) path exactly 𝑟𝑟 times. Then, 
we have 

𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠𝑘𝑘 + � � � 𝑐𝑐(𝑡𝑡1,𝑡𝑡2) ⋅ 𝑎𝑎𝑠𝑠1𝑠𝑠2  𝑎𝑎𝑠𝑠2𝑠𝑠3  𝑎𝑎𝑠𝑠3𝑠𝑠4 …  𝑎𝑎𝑠𝑠𝑘𝑘−1𝑠𝑠𝑘𝑘�𝑠𝑠2,…,𝑠𝑠𝑘𝑘−1

∞

𝑘𝑘=3
 

=  � 𝑟𝑟 ⋅ 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2 , 𝑠𝑠𝑘𝑘) .
∞

𝑟𝑟=0
 

and 

[𝑳𝑳 − 𝑰𝑰]𝑠𝑠1𝑠𝑠𝑘𝑘 = � 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2 , 𝑠𝑠𝑘𝑘) .
∞

𝑟𝑟=0
 

  
Accordingly, Equation (B-2) can be reformulated as: 

𝑓𝑓(𝑡𝑡1,𝑡𝑡2)𝑠𝑠1𝑠𝑠𝑘𝑘
=
∑ 𝑟𝑟 ⋅ 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1, 𝑡𝑡2, 𝑠𝑠𝑘𝑘)∞
𝑟𝑟=0

∑ 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2, 𝑠𝑠𝑘𝑘)∞
𝑟𝑟=0

= � 𝑟𝑟
𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1 , 𝑡𝑡2 , 𝑠𝑠𝑘𝑘)

∑ 𝜎𝜎(𝑟𝑟)(𝑠𝑠1, 𝑡𝑡1, 𝑡𝑡2 , 𝑠𝑠𝑘𝑘)∞
𝑟𝑟=0

∞

𝑟𝑟=0
 , 

… (B-3) 
which makes it easier to see that the PTF is indeed equivalent to a weighted average of 
𝑟𝑟 by impact shares from 𝑠𝑠𝑘𝑘 to 𝑠𝑠1 for particular values of 𝑟𝑟. 
 
  
Appendix C: Impact decomposition by target transaction emergence: a case study on 
China’s “Computer, electronic and optical equipment” sector (CHN_26 x CHN_26) 
 
 Using the transactional PTF model and the preliminary data of the OECD’s 
Inter-Country Input-Output Table (the 2021 release), Figure C and Table C present the 
result of impact decomposition by the number of times that a target transaction appears 
on a supply chain. We chose the intra-sectoral transaction of China’s “Computer, 
electronic and optical equipment (26)” sector <CHN_26 x CHN_26> as the target 
transaction, and considered six supply chains connecting a final product producer of the 
“Motor vehicles, trailers and semi-trailers (29)” sector in Germany, Japan and the United 
States, on one hand, and a value-added source in the “Computer, electronic and optical 
equipment (26)” sector of Korea and Chinese Taipei, on the other.  
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Figure C. Decomposition of delivered impacts with respect to the number of times that 
the target transaction appears along the selected supply chains: 2018 

  

 
Table C. The share of delivered impacts with respect to the number of times that the 

target transaction appears along the selected supply chains: 2018 

 

Source: Calculated and drawn by the authors. 
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(ICT equip.)

No. of target transaction emergence: 0 1 2 3 4 5 6 7 8 9 >=10

The target transaction: the intra-sectoral transactions of 
China’s “Computer, electronic and optical equipment”: 
<CHN_26 x CHN_26> 

No. of target 
transaction  
emergence

Germany
(automobile)

↓
Korea

(ICT equip.)

Germany
(automobile)

↓
Ch.Taipei

(ICT equip.)

Japan
(automobile)

↓
Korea

(ICT equip.)

Japan
(automobile)

↓
Ch.Taipei

(ICT equip.)

USA
(automobile)

↓
Korea

(ICT equip.)

USA
(automobile)

↓
Ch.Taipei

(ICT equip.)
0 92.95% 91.27% 95.25% 94.09% 91.54% 89.87%
1 4.74% 5.86% 3.19% 3.97% 5.69% 6.80%
2 1.56% 1.92% 1.05% 1.30% 1.87% 2.23%
3 0.51% 0.63% 0.34% 0.43% 0.61% 0.73%
4 0.17% 0.21% 0.11% 0.14% 0.20% 0.24%
5 0.05% 0.07% 0.04% 0.05% 0.07% 0.08%
6 0.02% 0.02% 0.01% 0.02% 0.02% 0.03%
7 0.01% 0.01% 0.00% 0.00% 0.01% 0.01%
8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

>=10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Total 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Appendix D: Multi-country input-output tables 
 
A multi-country input-output table brings together national tables of different 

countries into a single framework, and thus have the same basic structure of a national 
input-output table. The rows of the table show supply sectors of products, and the 
columns represent demand sectors for products, and an intersection of a row and a 
column indicates the value of transaction exchanged between these two sectors. The 
distinctive feature of multi-country tables, however, is that they explicitly present 
international transactions in the form of import/export matrices by trading partners, 
which allows for a comprehensive mapping of global production networks.  

Figure D gives a schematic presentation of the table for a simplified example of 
three sectors (Agriculture, Manufacturing, Service) and three countries (China, The 
United States, Rest of the World).  

 
Figure D: Multi-country input-output table (3 sectors / 3 countries) 

 

 

Source: drawn by the authors. 
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In the column-wise direction, entries in the table indicate input compositions of 
industrial sectors of a respective country. Entries in ZCC, for example, shows the input 
composition of China’s industries for domestically produced goods and services, i.e., 
domestic transactions of China. Those in ZUC by contrast show the input composition of 
China’s industries for imported products from the United States. The entries in ZWC 
allow the same interpretation vis-à-vis China’s imports from the Rest of the World; i.e., 
all other countries in the world except China and the United States. 

Turning to the 10th and 11th columns from the left, they present China’s final 
demands for goods and services. For example, YCC, YUC and YWC map China’s final 
demands for domestic products, for imports from the United States, and for imports from 
the Rest of the World, respectively. Other columns are read in the same manner. 

Vs and Xs are value added and total output, as seen in the conventional national 
input-output table. 

 
The multi-country input-output system shown in Figure D can be presented in 

a matrix form as follows: 

𝒙𝒙 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑥𝑥1𝐶𝐶

𝑥𝑥2𝐶𝐶

𝑥𝑥3𝐶𝐶

𝑥𝑥1𝑈𝑈

𝑥𝑥2𝑈𝑈

𝑥𝑥3𝑈𝑈

𝑥𝑥1𝑊𝑊

𝑥𝑥2𝑊𝑊

𝑥𝑥3𝑊𝑊⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑎𝑎11𝐶𝐶𝐶𝐶 𝑎𝑎12𝐶𝐶𝐶𝐶 𝑎𝑎13𝐶𝐶𝐶𝐶

𝑎𝑎21𝐶𝐶𝐶𝐶 𝑎𝑎22𝐶𝐶𝐶𝐶 𝑎𝑎23𝐶𝐶𝐶𝐶

𝑎𝑎31𝐶𝐶𝐶𝐶 𝑎𝑎32𝐶𝐶𝐶𝐶 𝑎𝑎33𝐶𝐶𝐶𝐶

𝑎𝑎11𝐶𝐶𝐶𝐶 𝑎𝑎12𝐶𝐶𝐶𝐶 𝑎𝑎13𝐶𝐶𝐶𝐶

𝑎𝑎21𝐶𝐶𝐶𝐶 𝑎𝑎22𝐶𝐶𝐶𝐶 𝑎𝑎23𝐶𝐶𝐶𝐶

𝑎𝑎31𝐶𝐶𝐶𝐶 𝑎𝑎32𝐶𝐶𝐶𝐶 𝑎𝑎33𝐶𝐶𝐶𝐶

𝑎𝑎11𝐶𝐶𝐶𝐶 𝑎𝑎12𝐶𝐶𝐶𝐶 𝑎𝑎13𝐶𝐶𝐶𝐶

𝑎𝑎21𝐶𝐶𝐶𝐶 𝑎𝑎22𝐶𝐶𝐶𝐶 𝑎𝑎23𝐶𝐶𝐶𝐶

𝑎𝑎31𝐶𝐶𝐶𝐶 𝑎𝑎32𝐶𝐶𝐶𝐶 𝑎𝑎33𝐶𝐶𝐶𝐶

𝑎𝑎11𝑈𝑈𝑈𝑈 𝑎𝑎12𝑈𝑈𝑈𝑈 𝑎𝑎13𝑈𝑈𝑈𝑈

𝑎𝑎21𝑈𝑈𝑈𝑈 𝑎𝑎22𝑈𝑈𝑈𝑈 𝑎𝑎23𝑈𝑈𝑈𝑈

𝑎𝑎31𝑈𝑈𝑈𝑈 𝑎𝑎32𝑈𝑈𝑈𝑈 𝑎𝑎33𝑈𝑈𝑈𝑈

𝑎𝑎11𝑈𝑈𝑈𝑈 𝑎𝑎12𝑈𝑈𝑈𝑈 𝑎𝑎13𝑈𝑈𝑈𝑈

𝑎𝑎21𝑈𝑈𝑈𝑈 𝑎𝑎22𝑈𝑈𝑈𝑈 𝑎𝑎23𝑈𝑈𝑈𝑈

𝑎𝑎31𝑈𝑈𝑈𝑈 𝑎𝑎32𝑈𝑈𝑈𝑈 𝑎𝑎33𝑈𝑈𝑈𝑈

𝑎𝑎11𝑈𝑈𝑈𝑈 𝑎𝑎12𝑈𝑈𝑈𝑈 𝑎𝑎13𝑈𝑈𝑈𝑈

𝑎𝑎21𝑈𝑈𝑈𝑈 𝑎𝑎22𝑈𝑈𝑈𝑈 𝑎𝑎23𝑈𝑈𝑈𝑈

𝑎𝑎31𝑈𝑈𝑈𝑈 𝑎𝑎32𝑈𝑈𝑈𝑈 𝑎𝑎33𝑈𝑈𝑈𝑈

𝑎𝑎11𝑊𝑊𝑊𝑊 𝑎𝑎12𝑊𝑊𝑊𝑊 𝑎𝑎13𝑊𝑊𝑊𝑊

𝑎𝑎21𝑊𝑊𝑊𝑊 𝑎𝑎22𝑊𝑊𝑊𝑊 𝑎𝑎23𝑊𝑊𝑊𝑊

𝑎𝑎31𝑊𝑊𝑊𝑊 𝑎𝑎32𝑊𝑊𝑊𝑊 𝑎𝑎33𝑊𝑊𝑊𝑊

𝑎𝑎11𝑊𝑊𝑊𝑊 𝑎𝑎12𝑊𝑊𝑊𝑊 𝑎𝑎13𝑊𝑊𝑊𝑊

𝑎𝑎21𝑊𝑊𝑊𝑊 𝑎𝑎22𝑊𝑊𝑊𝑊 𝑎𝑎23𝑊𝑊𝑊𝑊

𝑎𝑎31𝑊𝑊𝑊𝑊 𝑎𝑎32𝑊𝑊𝑊𝑊 𝑎𝑎33𝑊𝑊𝑊𝑊

𝑎𝑎11𝑊𝑊𝑊𝑊 𝑎𝑎12𝑊𝑊𝑊𝑊 𝑎𝑎13𝑊𝑊𝑊𝑊

𝑎𝑎21𝑊𝑊𝑊𝑊 𝑎𝑎22𝑊𝑊𝑊𝑊 𝑎𝑎23𝑊𝑊𝑊𝑊

𝑎𝑎31𝑊𝑊𝑊𝑊 𝑎𝑎32𝑊𝑊𝑊𝑊 𝑎𝑎33𝑊𝑊𝑊𝑊⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑥𝑥1𝐶𝐶

𝑥𝑥2𝐶𝐶

𝑥𝑥3𝐶𝐶

𝑥𝑥1𝑈𝑈

𝑥𝑥2𝑈𝑈

𝑥𝑥3𝑈𝑈

𝑥𝑥1𝑊𝑊

𝑥𝑥2𝑊𝑊

𝑥𝑥3𝑊𝑊⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

+

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝑦𝑦1𝐶𝐶∗

𝑦𝑦2𝐶𝐶∗

𝑦𝑦3𝐶𝐶∗

𝑦𝑦1𝑈𝑈∗

𝑦𝑦2𝑈𝑈∗

𝑦𝑦3𝑈𝑈∗

𝑦𝑦1𝑊𝑊∗

𝑦𝑦2𝑊𝑊∗

𝑦𝑦3𝑊𝑊∗⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

=  𝑨𝑨𝑨𝑨+ 𝒚𝒚 
where superscripts refer to countries such that C: China, U: the United States, W: Rest 
of the World, and subscripts indicate industrial sectors such that 1: Agriculture, 2: 
Manufacturing, 3: Services. 
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<The OECD Inter-Country Input-Output Table, the 2021 release> 
 
[Industrial sector classification] 

 
Source: The OECD Inter-Country Input-Output Database, the 2021 release. 

  

Code Description
01T03 Agriculture, forestry and fishing
05T06 Mining and extraction of energy producing products
07T08 Mining and quarrying of non-energy producing products
09 Mining support service activities
10T12 Food products, beverages and tobacco
13T15 Textiles, wearing apparel, leather and related products
16 Wood and products of wood and cork
17T18 Paper products and printing
19 Coke and refined petroleum products
20T21 Chemicals and pharmaceutical products
22 Rubber and plastic products
23 Other non-metallic mineral products
24 Basic metals
25 Fabricated metal products
26 Computer, electronic and optical products
27 Electrical equipment
28 Machinery and equipment, nec 
29 Motor vehicles, trailers and semi-trailers
30 Other transport equipment
31T33 Other manufacturing; repair and installation of machinery and equipment
35T39 Electricity, gas, water supply, sewerage, waste and remediation services
41T43 Construction
45T47 Wholesale and retail trade; repair of motor vehicles
49T53 Transportation and storage
55T56 Accommodation and food services
58T60 Publishing, audiovisual and broadcasting activities
61 Telecommunications
62T63 IT and other information services
64T66 Financial and insurance activities
68 Real estate activities
69T82 Other business sector services
84 Public admin. and defence; compulsory social security
85 Education
86T88 Human health and social work
90T96 Arts, entertainment, recreation and other service activities
97T98 Private households with employed persons
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[Countries of reference] 

 

Source: The OECD Inter-Country Input-Output Database, the 2021 release. 
 

Code Country (OECD members) Code Country
AUS Australia ARG Argentina
AUT Austria BRA Brazil
BEL Belgium BRN Brunei Darussalam
CAN Canada BGR Bulgaria
CHL Chile KHM Cambodia
COL Colombia CHN China (People's Republic of)
CZE Czech Republic CRI Costa Rica
DNK Denmark HRV Croatia
EST Estonia CYP Cyprus
FIN Finland IND India
FRA France IDN Indonesia
DEU Germany HKG Hong Kong, China
GRC Greece KAZ Kazakhstan
HUN Hungary LAO Lao People’s Democratic Rep.
ISL Iceland MYS Malaysia
IRL Ireland MLT Malta
ISR Israel MAR Morocco
ITA Italy MMR Myanmar
JPN Japan PER Peru
KOR Korea PHL Philippines
LVA Latvia ROU Romania
LTU Lithuania RUS Russian Federation
LUX Luxembourg SAU Saudi Arabia
MEX Mexico SGP Singapore
NLD Netherlands ZAF South Africa
NZL New Zealand TWN Chinese Taipei
NOR Norway THA Thailand
POL Poland TUN Tunisia
PRT Portugal VNM Viet Nam
SVK Slovak Republic ROW Rest of the World
SVN Slovenia
ESP Spain
SWE Sweden
CHE Switzerland
TUR Turkey
GBR United Kingdom
USA United States
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