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Abstract

This paper examines the effect of competition among firms on their decisions about the
pre-committed production (sales capacities), sales quantities, and product disposal in a
duopoly model with demand uncertainty. A complete set of parameter configurations
with which one of the following three cases emerges is identified: (i) neither capacity
expansion nor product disposal occurring regardless of demand realization; (ii) only ca-
pacity expansion occurring when high demand is realized; and (iii) only product disposal
occurring when low demand is realized. The flexibility in capacity constraints reduces
the likelihood of product disposal. Duopolistic competition increases the likelihood that
either capacity expansion or product disposal occurs. This tendency is enhanced as the
two goods are better substitutes. In addition, duopolistic competition leads to either
higher or lower disposal intensities (product disposal per output) depending on the
relative size of demand variability to production costs.
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1 Introduction

Societies have generally become more aware of resource scarcity and production and con-

sumption inefficiency. For example, many have criticized the regular disposal of unsold

merchandise, such as food and clothing (“green criticism”).1 One luxury fashion brand

faced fierce criticism after revealing that it scrapped many valuable unsold clothes and cos-

metics.2 Such a business practice, which is not exclusive to luxury products, has prevailed

in many sectors. As an example that recently became famous in Japan is the “Ehomaki”

sushi roll, which is consumed to celebrate the beginning of spring; it became an iconic target

of criticism against product disposal because many unsold rolls are wasted every year.3

Perhaps the practice of discarding unsold products is unavoidable (or even rational) to

some degree, however, since such products tend to be short-lived (e.g., perishable goods

tend to expire quickly) and face demand uncertainty for which it is difficult to prepare

precise amounts of products in advance. These factors may at least partially explain why

firms regularly dispose of large amounts of unsold merchandise. The following questions still

remain unanswered, however: Under what circumstances is product disposal unavoidable?

Do firms dispose of unsold products too much (as criticized)? If product disposal generates

inefficiency, what policy interventions can fix it?

This paper examines these positive and normative questions and attempts to evaluate

the efficiency of this business practice from the point of view of economic welfare. An

often-mentioned justification for product disposal is suggestive for choosing an analytical

framework: product disposal is done for preventing unsold items being stolen and sold

cheaply elsewhere, which may damage their intellectual property and brand value.4 This

anecdotal justification clearly suggests that products destroyed in case of unsold are more

or less differentiated and have some market power. Following Maggi (1996), the present

paper proposes a two-stage duopoly model with not-perfectly rigid capacity constraints:

Two firms producing differentiated goods first set their production capacities and then

compete in price. I extend the Maggi’s model in two respects. First, by introducing demand

1For example, the Sustainable Development Goals (SDGs) advocated by the United Nations in 2015
propose substantial reductions in food waste and losses in their twelfth goal such that “(b)y 2030, halve
per capita global food waste at the retail and consumer levels and reduce food losses along production and
supply chains, including post-harvest losses.”

2Elizabeth Paton, “Burberry to Stop Burning Clothing and Other Goods It Can’t Sell,” The New York
Times Sep. 6, 2018.

3Noriko Okada, “Ehomaki sushi rolls spark controbersy,” NHK World-Japan Feb. 4, 2019.
4Morwenna Ferrier, “Why does Burberry destroy its products and how is it justified?,” The Guardian

Jul. 20, 2018.
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uncertainty, the two firms have to set their sales capacities before demand uncertainty is

resolved. At the next stage, given information about each other’s capacity and precise

market size, they compete in price and determine sales quantities. Second, ex post capacity

adjustment can be two directions, while the Maggi’s model allows only ex post additional

production. Facing the realization of high demand, the firms may expand the sales capacity

through second-stage production, which is more costly than the first-stage capacity-building

production. In addition, if low demand is realized, they may choose not to sell their entire

capacities and scrap unsold capacity with incurring disposal costs, which is product disposal

in the present model. Although the present model is highly stylized, it can be analytically

solvable and describe all sets of equilibria.

Although the paper’s goal is to examine the effect of competition among firms on their

decisions about the pre-committed production (sales capacities), sales quantities, and prod-

uct disposal, the analysis begins with a monopoly case. The monopoly setting completely

abstracts firms’ strategic behavior from the model, but is useful to understand the intuition

of product disposal and a complete set of parameter configurations with which one of the

following three cases emerges: (i) neither capacity expansion nor product disposal (capac-

ity destruction) occurring regardless of demand realization; (ii) only capacity expansion

occurring when high demand is realized; and (iii) only product disposal occurring when

low demand is realized. We then proceed to the duopoly case. Our main findings are as

follows. First, product disposal occurs if the sum of the unit disposal and the initial-stage

production costs is sufficiently lower than demand variability and the net marginal cost of

the second-stage production in excess of the sales capacity. Thus, capacity flexibility con-

straints substantially reduce product disposal even though flexibility is just one direction

(only capacity expansion). Second, regarding the ratio of product disposal to capacity con-

straints (disposal intensity), the monopolist does not yield any inefficiency associated with

product disposal, which implies that by fixing standard production distortion by monopoly,

the social planner actually increases product disposal. Third, in the duopoly case, we show

that a Bertrand equilibrium emerges when product disposal occurs, which contribute to

increasing disposal intensity. This tendency is more pronounced as the degree of product

differentiation decreases.

The oligopoly model with pre-committed capacity constraints has long been studied.

Among others, Kreps and Scheinkman (1983) show that price competition with capacity

constraints yields Cournot outcomes under some conditions. However, Maggi (1996) shows

that relaxing the assumption about perfectly rigid capacity constraints and introducing
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product differentiation (a standard way to avert the Bertrand paradox) allow competition

equilibria to range from Bertrand to the Cournot depending on the degree of rigidity of ca-

pacity constraints.5 Mine is a variant of the Maggi model but departs from it by introducing

stochastic demand, which enables capacity expansion and product disposal to emerge. In

contrast, without demand uncertainty, Maggi (1996) demonstrates that firms always sell

their entire sales capacities at equilibrium regardless of their competition modes. Staiger

and Wolak (1992) study demand uncertainty in an oligopoly setting with strictly rigid ca-

pacity constraints; however, their interest is firms’ collusive behavior and its sustainability

in a repeated game context. This paper’s interest is completely different, examining

The rest of this paper is organized as follows. The next section describes the model’s

setup. Section 3 solves the model in a monopoly setting. We also conduct welfare analysis by

considering the social planner’s problem. Section 4 examines how the model’s implications

are altered from the monopoly case by introducing two symmetric firms competing in price.

Section 5 concludes.

2 Setup

2.1 Preferences

Consider an economy with two sectors: sector 0 provides a homogenous good (good 0) while

sector 1 horizontally differentiated goods. While sector 0 is perfectly competitive, sector 1

is oligopolistic. For analytical simplicity, I assume only two symmetric risk-neutral firms in

sector 1. A representative consumer has quasi-linear utilities of the form U = q0 + u(q),

where q0 is consumption of good 0 and q is the vector of consumption of sector 1 goods.

The sub-utility u(q) takes a form that yields the following linear demand for firm i’s good:

qi = a− pi + bpj, b ∈ (0, 1) (1)

where i, j = {1, 2} and i 6= j. As is standard, assuming that the economy’s population is

large enough for some workers to be employed in sector 0, this sector absorbs all income

effects.

I introduce demand uncertainty for sector 1. Parameter a is assumed to be stochastic:

It takes two states, “high” and “low”, such that aH = ā+ µ and aL = ā− µ, where µ > 0

is the deviation from the center value ā. Assuming each state may occur evenly, ā is also

the mean value of a and µ is the standard deviation of a.

5In addition, Maggi (1996) shows that only unique pure strategy equilibrium exists, unlike Kreps and
Scheinkman (1983) in which mixed-strategy equilibria may emerge.
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2.2 Production and Sales

All goods are produced with constant returns to scale technologies from labor only. Good

0 serves as the numeraire good in the model, and the competitive wage equals the marginal

product of labor in good 0. Units are chosen such that the wage equals 1, which prevails

across the economy assuming the free mobility of labor.

Supplying good 1 to the market is assumed to have two stages. In the first stage,

risk-neutral firms produce good 1 at constant marginal cost c, and its true demand is

unknown to them, so they must determine the output level only with the knowledge about

the distribution of demand levels.

In the second stage, the true value of a and each firm’s stock level of good 1 (sales

capacity) become known to all firms. Firms sell good 1, incurring cs for each unit of sales.

Following Maggi (1996), I assume that the firms can expand their sales capacities in the

second stage by paying constant marginal cost ce, which is no less than c (i.e., c ≤ ce).

Furthermore, the firms may not sell all the goods produced in the first stage and must

scrap these unsold units of good 1, incurring unit disposal cost cd.

These capacity expansion and capacity destruction (product disposal) not only reflect

the real world (e.g., overtime work and spot procurement from outside the firm as capacity

expansion and disposal of unsold merchandise as capacity destruction) but also defines the

sales capacity constraint flexibility set in the first stage, which may also characterizes goods

or industries. For instance, products required to use highly specialized inputs can have high

ce while those do not contain toxic chemical materials, like food and garments, may have

low cd. The second-stage production and disposal costs control the rigidity of sales capacity

constraints and influence firms’ strategies with respect to production and sales.

3 A Preliminary Examination

To understand the fundamentals of product disposal, I start with the monopoly case to

abstract the effect of strategic interactions among firms. In the case of monopoly, the

product demand can be simplified to q = a − p. As is standard, the model is solved by

backward induction.

5



3.1 The Second Stage

In the second stage, the monopolistic firm determines the sales quantity, given the output

level of good 1 at k. The marginal sales cost (MSC) depends on sales quantity:

MSC =











cs − cd for q < k

cs for q = k

cs + ce for q > k.

As long as the sales is not bounded to the first-stage production of k and product disposal

occurs, increasing sales by one unit saves the unit disposal cost. Thus, the MSC is cs − cd.

When sales quantity simply equals sales capacity, product disposal does not occur and the

MSC is cs. Once sales quantity surpasses k, the MSC becomes cs + ce.

The combination of sales capacity constraints and demand shocks leads to several pro-

duction and sales plans. However, the following three plans can immediately be excluded:

(i) product disposal in high demand, (ii) sales-capacity addition in low demand, and (iii)

product disposal in low demand and sales-capacity addition in high demand. The first two

cases are straightforward. Both production and disposal are costly, and additional produc-

tion after demand shocks are observed is costlier than the sales-capacity building in the first

stage. Thus, the firm never chooses sales capacity associated with product disposal in high

demand or product addition in low demand. The third exclusion may be somewhat elusive,

however, for the following reason. Suppose that sales capacity set in the first stage is not

binding in both demand states. Then, while a unit increase in sales capacity would raise the

ex post profit in high demand by ce to save product addition by one unit, it would reduce the

ex post profit in low demand by cd by generating a unit product disposal. Thus, if ce > cd,

the firm chooses sales capacity that does not require additional production in high demand.

If ce < cd, the opposite is true. Therefore, in what follows, I will examine conditions that

enable one of the following three cases: (i) neither product disposal nor product addition

occurs, (ii) sales capacity expanding in high demand, and (iii) unsold goods being discarded

in low demand.

No Disposal and No Additional Production (NN)

Letting k denote the sales capacity set in the first stage, the profit in each demand state is

expressed by

πs(k) = k(as − k − cs), s = {H,L}.
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For product disposal not to occur, the marginal revenue in the low-demand state evaluated

at k needs to be greater than MSC:

aL − 2k ≥ cs − cd. (2)

Likewise, for product addition (capacity expansion) not to occur, the marginal revenue in

high demand evaluated at k is no greater than MSC:

aH − 2k ≤ cs + ce. (3)

Both no-disposal and no-expansion conditions suggest that demand variability µ cannot be

too large.

No Disposal and Additional Production (NA)

The profit in low demand takes the same form as the NN case: πL(k) = k(aL − k − cs).

Given high demand, the firm sets the sales quantity by maximizing

max
q

q [aH − q − (cs + ce)] + cek,

which leads to the sales quantity and profit in high demand such that

qH =
aH − (cs + ce)

2
, πH(k) =

1

4
[aH − (cs + ce)]

2 + cek.

The profit linearly increases as the first-stage capacity k increases, which implies that in-

creases in the sales capacity reduces costly additional production in the second stage.

The condition for no disposal is the same as (2). The condition for additional production

to occur is the complement set of (3):

aH − 2k > cs + ce. (4)

Disposal and No Additional Production (DN)

This is a mirror image of the NA case. Sales quantity in high demand equals the sales

capacity, k, and the profit is πH(k) = k(aH − k− cs). The firm determine sales quantity in

low demand by solving

max
q

q [aL − q − (cs − cd)]− cdk,

which leads to the sales and profit in low demand such that

qL =
aL − (cs − cd)

2
, πL(k) =

1

4
[aL − (cs − cd)]

2 − cdk.
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Each unit of increasing first-stage production reduces the profit by cd due to increasing

product disposal.

For production disposal to occur, we need the following condition:

aL − 2k < cs − cd, (5)

which is the complement set of (2). The condition for excluding additional production in

the second stage is the same as (3).

3.2 The First Stage

In the first stage, the firm sets its sales capacity, k, to maximize the expected profits. In

the NN case, profit maximization is

max
k

1

2
k(aL − k − cs) +

1

2
k(aH − k − cs)− ck ⇔ max

k
k(ā− k − cs − c).

Hence, the firm optimizes k using information about the average demand size, the unit sales

cost, and the unit cost for first-stage production. The first-order condition (FOC) gives the

optimal sales capacity that the firm does not alter in the second stage:

kn =
ā− (c+ cs)

2
.

Substituting kn into (2), the condition for no disposal is as follows.

cd + c ≥ µ. (6)

Note that cd + c is interpreted as the total unit cost for product disposal (we may refer to

it as the “long-run” unit cost for product disposal because c and cd occur in the fist and

second-stages, respectively).6 When the long-run disposal cost surpasses the size of demand

fluctuations, the firm would avoid product disposal.

The condition for no additional production in (3) turns to be

ce − c ≥ µ. (7)

This condition is also intuitive. The net cost for capacity expansion in the second stage

is ce − c since if the firm instead produces that margin in the first stage, it would cost

c. In this sense, ce − c represents the “long-run” unit cost for capacity expansion, and

condition (7) states that when the “long-run” capacity expansion cost is greater than the

6Of course, the immediate or “the short-run” marginal cost for dumping unsold output is cd.
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size of demand fluctuations, the firm would never expand its sales capacity even after high

demand is observed.

In the capacity-expansion case (the NA case), profit maximization is given by

max
k

1

2
k(aL − k − cs) +

1

8
[aH − (cs + ce)]

2 +
ce
2
k − ck.

The FOC gives the optimal sales capacity such that

ka =
aL − (2c+ cs − ce)

2
.

Substituting this result into (4), the condition for additional production is

ce − c < µ, (8)

which is the complement set of (7). The no-disposal condition is derived by substituting

kNA into (2):

cd + c ≥ ce − c. (9)

I now turn to the disposal case (the DN case). The first-stage optimization is formulated

as follows.

max
k

1

8
[aL − (cs − cd)]

2 −
cd
2
k +

1

2
k(aH − k − cs)− ck.

The FOC gives the optimal sales capacity such that

kd =
aH − (2c + cs + cd)

2
.

Applying this result to (5), the condition for disposal to occur is given by

cd + c < µ. (10)

Substituting kDN into (3), the condition for additional production not to occur is

cd + c < ce − c, (11)

which is the complement set of (9).

Figure 1 presents the parameter configurations that determine the optimal production-

and-sales strategy in a (cd+c, ce−c) plane. Only when both long-run disposal and additional

production costs are greater than the standard deviation of demand, µ, neither product dis-

posal nor capacity expansion occurs. Otherwise, the firm exerts either production disposal

or additional production to adjust demand fluctuations. For product disposal to be chosen

as the optimal strategy, the long-run disposal cost has to be lower than the standard devi-

ation of demand and the long-run marginal cost for capacity expansion. I summarize these

findings in the following proposition.
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cd + c

ce − c

µ

µ

NN

NA

DN

Figure 1: The Configuration of Production and Disposal

Proposition 1. In a monopoly economy in which sales capacity must be set before demand

uncertainty is resolved (the first stage) and costly sales capacity expansion is feasible after

demand uncertainty is resolved (the second stage), product disposal occurs only when the

sum of the marginal disposal cost and the marginal cost for first-stage production is lower

than (i) the standard deviation of variable demand and (ii) the net marginal cost for the

second stage production in excess of the sales capacity.

Interestingly, second-stage production makes the condition for product disposal more

stringent. To see this, suppose that the second-stage production is infeasible (sales capacity

constraints are perfectly rigid). Then, the condition of cd+ c < µ is necessary and sufficient

for product disposal to occur. However, once the second-stage production becomes available

and the long-run marginal cost for the second-stage production, ce − c, is lower than the

long-run unit disposal cost, cd + c, the firm is willing to adjust demand fluctuations by

capacity expansion rather than product disposal; product disposal would not occur under

such a parameter configuration. Figure 1 indicates the parameter range in which second-

stage production makes product disposal less profitable by a colored triangle area. The

following proposition captures this finding.

Proposition 2. As the production cost in the second-stage declines, the sales capacity

constraints set in the first-stage loosen. As a result, the firm will choose a smaller sales

capacity in the first-stage and as a result, the possibility of product disposal reduces.
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Table 1: Summary Results: Monopoly Case

Sales capacity Sales quantity Expected profits

NN kn = ā−(c+cs)
2

qnH = qnL = kn π̄n = k2n

NA ka = aL−(2c+cs−ce)
2

qaH = aH−(cs+ce)
2 π̄a =

q2aH+k2a
2qaL = ka

DN kd = aH−(2c+cs+cd)
2

qdH = kd
π̄d =

q2
dL

+k2
d

2
qdL = aL−(cs−cd)

2

Table 1 summarizes the optimized sales capacity (first-stage production), sales in the

second-stage, and profits.

3.3 Production Disposal and Social Welfare

This section focuses on the case that the firm selects the disposal strategy (the DN case)

and examines both positive and normative aspects of the disposal strategy. The amount of

product disposal is given by D ≡ kd − qdL, where qdL is the sales quantity in low demand.

Simple algebra leads to

Dm = µ− (cd + c). (12)

We, then, define the disposal intensity as the ratio of disposal to sales capacity (output in

the first-stage):

DIm ≡
2µ − 2(cd + c)

ā+ µ− (cs + cd + 2c)
.

The effects of the model’s key parameters on disposal intensity are summarized as follows:

Proposition 3. Ceteris paribus, as average market size increases (ā ↑), production cost in-

creases (c ↑), and as disposal cost increases (cd ↑), disposal intensity decreases. In contrast,

more variable demand (µ ↑) and higher sales cost (cs ↑) both raise disposal intensity.

Proof. See the Appendix.

All these results are intuitive. Product disposal depends only on demand variability and

long-run disposal cost. An increase in the average demand size raises the sales capacity and

lowers disposal intensity. Sales cost increases similarly work but in the opposite direction.

An increase in the disposal cost urges the firm to decrease the sales capacity and increase

the sales in the low state. As a result, disposal intensity decreases. An increase in first-stage
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production cost lowers sales capacity, but does not affect sales quantity in the low state.

Disposal intensity decreases. Finally, as demand becomes more variable, sales amount in

low demand falls whereas the firm increases its sales capacity because it also cares about

high demand. Consequently, disposal intensity increases.

The effect of demand variability on firm behavior is interesting. The firm’s expected

profit is expressed by

π̄d =
k2d + q2dL

2
, (13)

which increases as the standard deviation of demand fluctuations increases (see the Ap-

pendix). Hence, the risk-neutral firm strictly prefers demand uncertainty when optimally

choosing the sales capacity at which product disposal may occur. We record this point as

the following proposition.

Proposition 4. Suppose that the firm optimally chooses the sales capacity that yields prod-

uct disposal in the case of demand shortage. If the demand becomes more volatile in the

manner of mean-preserving spread, then, the firm’s average profit increases.

Proof. See the Appendix.

Perhaps surprisingly, increasing demand uncertainty and the concomitantly increasing

product disposal can result in even higher consumer surplus if consumers are risk-neutral

because the welfare gain from increasing supply in the high-demand state always overweighs

the welfare loss due to shrinking supply in the low-demand state. Along with Proposition

4, we conclude that as demand uncertainty increases in a mean-preserving spread manner,

social welfare (defined as the sum of the firm’s profit and consumer surplus) improves

when the firm optimally chooses a product disposal strategy. This result is recorded in the

following proposition.

Proposition 5. Suppose that all economic agents are risk-neutral and the firm optimally

chooses a sales capacity that generates product disposal in the case of demand shortage.

If demand becomes more volatile in the manner of mean-preserving spread, then product

disposal increases and, on average, social welfare increases.

Proof. See the Appendix.
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3.4 Policy Intervention and Efficiency

To what extent does the monopolist that optimally chooses a disposal strategy distort

efficiency? To answer this question, we replace the monopolist with the social planner (the

government) as a maximizer of expected social welfare. To avoid unnecessary redundancy,

the parameter configurations that determine which of the three strategies (NN, NA, and

DN) is chosen are the same as in the monopolist case. With this in mind, I focus on the

product disposal case (DN).

Consider the second stage after low demand is observed. For a given sales capacity k,

the social planner maximizes

max
qL

(aL − qL)qL − (cs − cd)qL − cdk +
q2L
2
,

where the last term is consumer surplus. As is standard, this maximization problem leads

to the marginal cost pricing pL = cs − cd and qL = aL − cs + cd. Hence, the social welfare

in the low-demand state is given by

WL(k) =
(aL − cs + cd)

2

2
− cdk.

When high demand is observed, k is binding and the social planner’s pricing is pH = aH−k,

as in the monopolist case. The social welfare in the high-demand state is

WH(k) = k(aH − k − cs) +
k2

2
.

In the first stage, the social planner chooses k to maximize the expected social welfare:

max
k

W̄ (k) = max
k

1

2
[WL(k) +WH(k)]− ck,

leading to the socially optimal sales capacity k∗D as follows:

k∗DN = aH − (cs + cd + 2c).

The amount of disposal and disposal intensity are given by

d∗ = 2 [µ− (cd + c)] and DI∗ =
2µ− 2(cd + c)

ā+ µ− (cs + cd + 2c)
,

respectively. Hence, the social planner chooses the exactly the same disposal intensity as the

monopolistic firm. The social planner can fix the monopolist’s output distortion, doubling

the supply of good 1 (as is standard). However, with the same disposal intensity, the social

planner proportionally increases product disposal. The monopoly power itself, then, does

not distort product disposal. We record this finding in the following proposition.
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Proposition 6. The social planner’s ex ante choice of disposal intensity, defined by the

ratio of product disposal to sales capacity is the same as the monopolist’s choice. The

monopolist’s disposal intensity is thus socially optimal.

From Proposition 6, we derive the following corollary:

Corollary 1. Any ex ante taxes and subsidies that affect the disposal intensity worsens

social welfare on average.

Proof. See the Appendix.

Corollary 1 states that product-disposal reductions by policy intervention before demand

uncertainty is resolved (ex ante policy intervention) are incompatible with social-welfare

maximization. However, since unsold merchandize is discarded in low demand, one may

think that ex post policy interventions (e.g. product disposal taxes or sales subsidies) may

increase sales quantity, resulting in less product disposal and higher social welfare. However,

such policies generally cannot avoid the time-inconsistency problem: if the firm correctly

expect policy interventions when low demand is realized, it is highly likely to change the

first-stage capacity setting.

4 Duopoly

We now proceed to a duopoly model with two symmetric firms facing the demand in (1).

Unlike the monopoly case, the choice of competition mode–Bertrand (price) or Cournot

(quantity) competition–matters. The present model is a variant of the oligopoly model with

capacity constraints, and in this respect, I relay heavily on Maggi (1996) in which either

Bertrand or Cournot competition is endogenously determined depending on the rigidity of

pre-committed capacities. However, in Maggi (1996), predetermined capacity constraints

are always binding at equilibrium because product demand is deterministic. In contrast,

the present model frees capacity constraints from always being binding by incorporating

stochastic demand, enabling product disposal and capacity expansion.

4.1 Second-Stage Subgame

As in the monopolist case, we start with the subgame in the second stage. Regardless of

the realized demand state, if capacity constraints are not binding (either due to capacity

expansion or product disposal), Bertrand (price) competition emerges. By contrast, if each

14



pj

pi

pj(1) pj(2) pj(3)

ri(pj |cs + ce)

ri(pj |cs − cd)

Φ(pj|ki)

Figure 2: Firm i’s Best Response

firm sells its entire predetermined capacity at the market-clearing price, the second-stage

competition mode is essentially Cournot, as Kreps and Scheinkman (1983) point out.

In general, for firm i’s profit of πi = (pi − x)qi, where x is the cost of generating one

unit of sales, firm i’s reaction function in Bertrand competition is defined by rbi (pj |x) ≡

argmaxpi πi. Using the demand function in (1), the explicit form is given by rbi (pj |x) =

(a+ bpj +x)/2.7 This Bertrand reaction function holds when firms either expands capacity

or dispose of products. To clarify this point, firm i’s capacity-expansion optimization in the

second stage is maxpi [pi − (cs + ce)]qi + ceki and its product disposal is maxpi [pi − (cs −

cd)]qi − cdki. In both optimization, the pre-committed capacity ki does not affect firm i’s

best-reaction prices.

If the firm neither expands capacity nor disposes of products, it sells precisely its entire

capacity. Hence, the price-setting subgame is reduced to a capacity-setting fist-stage game

so that Cournot competition emerges (Kreps and Scheinkman, 1983). We can define price

combinations that exactly satisfy firm i’s capacity constraints set in the first stage by

pi ≡ Φi(pj|ki) (status quo prices). The explicit form of this “status quo” curve is given by

Φi(pj|ki) = a− ki + bpj.

How does firm i react to the rival firms’ price pj? Figure 2 illustrates two Bertrand

reaction functions, rbi (pj |cs + ce) and rbi (pj|cs − cd), and the status quo curve Φ(pj|ki) for

7I omit the subscripts s = {H,L} for the demand states since discussion here is commonly applicable to
both demand states. I will reintroduce the subscripts when I discuss the full-game.
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given ki in a (pj , pi) plane. It is easy to verify that 0 < ∂rbi/∂pj < ∂Φi/∂pj < 1.8 Relegating

rigorous exposition to the Appendix, I here present the intuition about firms i’s reaction.

When the rival price pj is low (pj(1)), the residual demand for firm i is low. Thus, firm i’s

best response is the Bertrand reaction price ri(pj |cs − cd), which is above the status quo

price Φi(pj |ki) so that product disposal occurs. When the residual demand is small, firm i’s

rational behavior is selling only a part of its capacity and maintaining a high price rather

than selling up to capacity at a low price. When the rival price falls in the middle rage pj(2),

firm i’s demand is relatively large. Hence, the best response is selling the entire capacity at

the market-clearing price Φ(pj|ki). Finally, if the rival price pj is high (pj(3)), the residual

demand is large enough for firm i to expand its sales capacity. The best response coincides

with the Bertrand reaction price ri(pj |cs + ce).

In summary, firm i’s reaction curve in the second-stage subgame, Ri(pj |ki), is as follows:

Ri(pj |ki) =











rbi (pj |cs − cd) for pj <
2ki−a+(cs−cd)

b

Φi(pj |ki) for 2ki−a+(cs−cd)
b

≤ pj ≤
2ki−a+cs+ce

b

rbi (pj |cs + ce) for pj >
2ki−a+cs+ce

b
,

which is depicted as the bold line in Figure 2. Firm i’s best-response price to pj monotoni-

cally increases and always has a slope less than 1. Firm j’s best response to pi is symmetry

around a 45 degree line. Hence, the two best reaction functions necessarily intersect only

once: The second-stage subgame has a unique equilibrium with a pure strategy for each

demand state.

4.2 Capacity-setting Game: Status Quo

Given these subgame reaction functions, I move to first-stage capacity setting. As in the

monopolist case, the three cases of NN, NA, and DN exhaust all possible equilibria in the

duopoly. First, the subgame best-response functions intersect at the segment in which both

pre-committed ki and kj are binding in both demand states (pj(2) in Figure 2). Neither

capacity expansion nor product disposal occurs (NN). Since neither firms alter its capacities

in the second stage, optimization is reduced to a capacity-choice problem in the first-stage:

max
ki

1

2
(piL − cs)ki +

1

2
(piH − cs)ki − cki,

⇔max
ki

[E(pi)− (c+ cs)] ki,

8To illustrate Figure 2, I assume that the second-stage parameters are configured such that the Bertrand
reaction functions intersect with the status quo curve for non-negative pj , namely, ki > (a − x)/2. This is
just made for explanatory convenience.
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where E(pi) ≡ (piL + piH)/2 = ā/(1 − b) − ki/(1 − b2) − bkj/(1 − b2) is the average price.

Firm i’s optimal capacity choice is given by

ki(kj) =
1

2

[

(1 + b)ā− (1− b2)(c + cs)− bkj
]

,

which leads to the sales capacity in symmetric equilibrium such that

kn =
(1 + b)[ā− (1− b)(c+ cs)]

2 + b
. (14)

The equilibrium price in each state is pns = (as − kn)/(1 − b) for s = {H,L}. The firms

respond to demand fluctuations by adjusting market-clearing prices.

Under what conditions is the equilibrium of the NN case sustainable? The firms’ sales

capacities are binding in both demand states, so deviations from the equilibrium price in

the high-demand state need to be price-cutting by capacity expansion. Likewise, when the

low-demand state realizes, possible deviations from the equilibrium price are price-raising

by product disposal. The condition for no-expansion is that, given that the rival firm stays

on kn, firm i’s marginal revenue from capacity expansion evaluated at kn is no greater than

the marginal cost for capacity expansion cs+ce in the high-demand state. Using kn in (14),

the explicit form of this condition is given by

ce − c ≥
µ

1− b
. (15)

In a similar vein, deviations from the equilibrium price in the low-demand state in order for

disposal not to occur, firm i’s marginal revenue evaluated at kn is no less than the marginal

cost for product disposal cs − cd:

cd + c ≥
µ

1− b
. (16)

These no-deviaition conditions are more stringent than the counterpart conditions in the

monopoly case (see (6) and (7)). When the two products are independent, i.e. b = 0, (15)

and (16) are identical to the non-deviation conditions in monopoly, and as the two goods

become more substitutable (b ↑), either capacity expansion or product disposal is more

likely to occur. Intuitively, in duopoly, each firm attempts to steal rents from the rival firm

by capacity expansion with price-cutting in high demand or product disposal with price-

raising in low demand. The more substitutable the two goods become (b ↑), the easier the

rent sealing is. Thus, the NN case is less sustainable in duopoly than in monopoly. This

result is recorded in the following proposition.
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Proposition 7. Capacity expansion in the high-demand state and product disposal in the

low-demand state are more likely to emerge in duopoly than in monopoly. This tendency

increases in less-differentiated products.

4.3 Capacity Expansion

Next, the subgame best-response functions in the high-demand state intersect at the seg-

ment in which both firms expand their sales capacity (pj(3) in Figure 2). The pre-committed

capacities must be binding in the low-demand state (pj(2) in Figure 2) for the follow-

ing reason. Suppose not. Then, the second stage profit-maximization in the low state is

written by either capacity expansion (maxpi [pi − (cs + ce)]qi + ceki) or product disposal

(maxpi [pi− (cs− cd)]qi− cdki). In case of capacity expansion, the firm can raise the second-

stage profits by increasing capacity without altering the equilibrium price. The firm contin-

ues to increase its capacity until no room exists for capacity expansion, which contradicts

with non-biding capacity in the low state. In case of product disposal, the firm can raise

the second-stage profits by cutting capacity. However, this necessarily reduces profit in the

high state. Thus, if profit gains in the low state overweighs profit loss in the high state, the

firm continues to cut its capacity until capacity constraints are binding in the high state,

which contradicts with capacity expansion in the high state. If profit gains in the low state

is overweighed by profit loss in the high state, the firm must increase initial capacity and

product disposal disappears, which is also contradiction. Hence, when the firm expands

capacity in the high-demand state, its pre-committed capacity must be binding when the

low-demand state is realized.

The maximized profit in the high-demand state is expressed by πaH(ki) = (qaH)2+ceka,

where qaH is the Bertrand sales quantity such that

qaH =
aH − (1− b)(cs + ce)

2− b
.

The Bertrand price is given by

pbaH =
aH + (cs + ce)

2− b
.

When low demand is realized, the sales capacity is binding, so capacity-choice optimization

in the first stage is

max
ki

1

2
(piL − cs)ki − cki +

πaH(ki)

2
⇔ max

ki
[piL − (2c+ cs − ce)]ki,
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which gives firm i’s reaction function such that

ki(kj) =
1

2

[

(1 + b)aL − (1− b2)(2c + cs − ce)− bkj
]

.

The sales capacity in symmetric equilibrium is

ka =
(1 + b)[aL − (1− b)(2c + cs − ce)]

2 + b
.

The Cournot price in the low state is given by

paL =
aL + (1− b2)(2c+ cs − ce)

(1− b)(2 + b)
.

For capacity expansion to occur, the marginal revenue from capacity expansion in the

high-demand state evaluated at ka is greater than the marginal cost in capacity expansion

cs+ce. It is easy to verify that this condition is the complement set of (15): ce−c ≤ µ/(1−b)

(see the Appendix). Likewise, for product disposal not to occur, the marginal revenue from

product disposal evaluated at ka needs to be greater than the marginal cost in product

disposal cs − cd. This no-disposal condition is derived as ce − c < cd + c, which is the same

as in the monopoly case.

4.4 Product Disposal

Finally, the subgame best-response functions in the high state intersect at the segment in

which both firms are capacity constrained (pj(2) in Figure 2) while they intersect at the

segment of pj(1) in the low state. The reason for the capacity-constrained firms in high

demand is analogous to that for capacity constrained-firms in low demand in the NA case.

The second-stage equilibrium price in the low state is independent from the pre-committed

capacity in case of product disposal. Thus, if capacity expansion occurred in the high state,

the firm could monotonically increase profits in both states by expanding its capacity in

the first-stage. Product expansion cannot occur. Product disposal in the high state also

yields room for profit gains by capacity cutting in the first stage. Hence, the pre-committed

capacity must be binding in the high state.

The maximized profit in the low-demand state is given by πdL(ki) = (qdL)
2−cdki, where

qdL is the Bertrand sales quantity such that

qdL =
aL − (1− b)(cs − cd)

2− b
. (17)

The Bertrand price is given by

pdL =
aL + (cs − cd)

2− b
.
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The pre-committed capacities are binding in the high-demand state, so capacity-choice

optimization in the first stage is

max
ki

1

2
(piH − cs)ki − cki +

πdL(ki)

2
⇔ max

ki
[piH − (2c+ cs + cd)]ki.

Firm i’s reaction functions is

ki(kj) =
1

2
[(1 + b)aH − (1− b2)(2c+ cs + cd)− bkj ],

and the sales capacity in symmetric equilibrium, thus, is given by

kd =
(1 + b)[aH − (1− b)(2c + cs + cd)]

2 + b
. (18)

The Cournot price in the high state is given by

pdH =
aH + (1− b2)(2c+ cs + cd)

(1− b)(2 + b)
.

For product disposal to occur, the marginal revenue from product disposal in the low-

demand state evaluated at kd is lower than the marginal cost in product disposal cs − cd.

It is easy to verify that this condition is the complement set of (16): cd+ c ≤ µ/(1− b) (see

the Appendix). Likewise, for capacity expansion not to occur, the marginal revenue from

capacity expansion evaluated at kd needs to be lower than the marginal cost in capacity

expansion cs + ce. This no-expansion condition is derived as ce − c > cd + c, which is the

same as in the monopoly case.

The disposal intensity in duopoly is given by

DId = 1−
qdL
kd

, (19)

where qdL and kd are given by (17) and (18), respectively. Although the explicit form

of DId is more involved than the counterpart in monopoly, it is easy to verify that the

characteristics in Proposition 3 holds.

More interesting (and complicated) question is whether market competition may con-

tribute to decreasing disposal intensity (product disposal per output). First, when b = 0,

the two products are independent so that each firm behaves as a monopolist. This can

be seen by setting b = 0 in (17) and (18), leading to the monopolistic solutions (see the

DN case in Table 1). Next consider b > 0. Although it is difficult to evaluate the sign of

∂DIm/∂b without any restrictions on b, around b = 0, we can obtain

∂DIm
∂b

∣

∣

∣

∣

b=0

= aL(2c + cs + cd)− aH(cs − cd).
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Thus, if the unit sales cost is lower than the unit disposal cost, the sign is unambiguously

positive, which means that price competition in a differentiated duopoly increases disposal

intensity relative to monopoly. Suppose that the unit sales cost is large enough to let cs−cd

be positive. The duopoly disposal intensity is lower than the monopoly disposal intensity if

aH
aL

>
2c+ cs + cd

cs − cd

holds. The left-hand side, the ratio of market size in the two demand states, is interpreted

as variability of demand.9 The right-hand side is the ratio of the long-run (first-stage) unit

cost of capacity building to the short-run (second-stage) unit sales cost, which increases

as the first stage unit production cost c or the unit disposal cost cd increases. Therefore,

else equal, duopolistic competition tends to reduce disposal intensity with high demand

variability and higher long-run disposal costs (cd + c). These results are summarized in the

following proposition.

Proposition 8. Duopolistic competition in differentiated goods does not always reduce dis-

posal intensity (product disposal per output) from the monopoly benchmark. If the unit sales

cost is lower than the unit disposal cost, the disposal intensity in duopoly is higher than in

the monopoly. Otherwise, duopolistic competition lowers disposal intensity if demand vari-

ability is sufficiently high relative to the ratio of the long-run capacity building cost to the

short-run sales cost.

In summary, I conclude that duopolistic competition reduces the likelihood of firms’

choice of the status quo strategy. Either capacity expansion or product disposal is more

likely to occur and this tendency is enhanced as the products become better substitutes

(Proposition 7). The welfare effect is obviously positive because firms adjust first-stage

sales capacities more flexibly, in addition to standard welfare gains from becoming less

monopolistic. Product disposal becomes more frequent. However, with demand uncertainty,

product disposal itself is not irrational. Furthermore, duopolistic competition leads to either

higher or lower disposal intensities depending on the relative size of demand variability to

production costs. Although difficult to obtain clearcut conclusions, it is fair to say that

when product demand is highly variable, duopolistic competition contributes to lowering

disposal intensity, relative to benchmark monopoly (Proposition 8).

9It is easy to verify that aH/aL increases as µ increases.
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5 Concluding Remarks

This paper investigates the effect of competition among firms on their decisions about

the pre-committed production (sales capacities), sales quantities, and product disposal in

imperfect competition. To obtain benchmark results, the analysis begins with a monopoly

case. Using the benchmark, I describe a complete set of parameter configurations with which

one of the following three cases emerges: (i) neither capacity expansion nor product disposal

occurring regardless of demand realization; (ii) only capacity expansion occurring when high

demand is realized; and (iii) only product disposal occurring when low demand is realized.

The present paper finds that the flexibility in capacity constraints, such as responding to

high demand by spot production, substantially reduces the likelihood of product disposal.

In addition, the paper confirms that disposal intensity chosen by a monopolist is socially

optimal, which implies that even the social planner who maximizes the expected social

welfare before demand uncertainty is resolved, cannot reduce product disposal.

With these benchmark results, the paper examines the effects of duopolistic competition

in differentiated goods on product disposal. Main findings are as follows. First, duopolistic

competition increases the likelihood that either capacity expansion or product disposal

occurs. This tendency is enhanced as the two goods are better substitutable. In this

sense, competitive markets observe product disposal more frequently. Second, duopolistic

competition leads to either higher or lower disposal intensities depending on the relative

size of demand variability to production costs.

There are issues requiring further investigation. First, the present model features

oligopolistic competition in differentiated goods, which eliminates the possibility of mixed-

strategy equilibria. Nevertheless, analytical solutions are somewhat complex which reduces

the model’s tractability. The assumption of linear demand is hopefully relaxed to check the

robustness of the obtained results. All these are left for future work.
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A Proofs

A.1 Proposition 2

∂DI
∂ā

< 0 and ∂DI
∂cs

> 0 are immediate. Since the sales quantity is positive,

qL > 0 ⇔ ā > µ+ cs − cd (A.1)

holds, which proves

∂DI

∂c
= − [ā+ µ− (2c+ cd + cs)] + 2µ− 2(c+ cd) = −(ā− µ+ cd − cs) < 0.

To obtain ∂DI
∂µ

> 0 and ∂DI
∂cd

< 0, subtracting c+ cs from the both sides of (A.1) yileds

ā− (c+ cs) > µ− (cd + c) > 0

which proves

∂DI

∂µ
= ā+ µ− (2c + cd + cs)− [µ− (c+ cd)] = ā− (c+ cs) > 0,

∂DI

∂cd
= − [ā+ µ− (2c+ cd + cs)] + µ− (c+ cd) = −ā+ c+ cs < 0.

A.2 Proposition 4

Since ∂kd/∂µ = 1/2 and ∂qdL/∂µ = −1/2,

∂π̄d
∂µ

= 2kd
∂kd
∂µ

+ 2qdL
∂qdL
∂µ

= kd − qdL > 0.
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A.3 Proposition 5

The average social welfare is defined by the sum of the average profits and the average

consumer surplus. In the DN case, the average social welfare is

W̄d = π̄d +
1

2

[

k2d + q2dL
2

]

=
3

4

[

k2d + q2dL
2

]

.

Thus, from Proposition 4, we can immediately conclude that ∂W̄d/∂µ > 0.

A.4 Corollary 1

How about a disposal tax? The government chooses td to maximize the following (average)

social welfare:

W̄d(td) = π̄d(td) +
1

2

[

k2d(td) + q2dL(td)

2

]

+
1

2
td [kd(td)− qdL(td)]

=
3

4

[

kd(td)
2 + qdL(td)

2
]

+
1

2
td [kd(td)− qdL(td)]

Noting that ∂kd/∂td = −1/2 and ∂qdL/∂td = 1/2, the derivative of W̄d with respect to

td is given by

∂W̄d(td)

∂td
=

3

2

[

kd
∂kd
∂td

+ qdL
∂qdL
∂td

]

+
1

2
[kd − qdL] +

1

2
td

[

∂kd
∂td

−
∂qdL
∂td

]

=
3

4
[−kd + qdL] +

1

2
[kd − qdL]−

1

2
td =

qdL − kd
4

−
1

2
td.

Since d = kd − qdL > 0, we have

∂W̄d(td)

∂td

∣

∣

∣

∣

td=0

< 0

B Technical Note

B.1 Cournot Competition in Differentiated Goods

Suppose that direct demand function for firm i is given by

qi = a− b1pi + b2pj, (B.1)

where pj it the price of rival firm’s good. The corresponding inverse demand is

pi = α− β1qi − β2qj,

where α = a/(b1 − b2), β1 = b1/(b
2
1 − b22), and β2 = b2/(b

2
1 − b22).
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In Cournot competition, firms compete in quantities. Firm i choose qi to maximize

(α − β1qi − β2qj)qi − xqi, taking as given qj. The Cournot reaction function of firm i to

output qj is (α− x− β2qj)/2β1. By symmetry, the Cournot equilibrium is

qc =
α− x

2β1 + β2
, pc =

β1α+ (β1 + β2)x

2β1 + β2
.

However, for deriving firm i’s reaction function, it is convenient to consider profit-

maximizing firm i that chooses pi with maintaining the rival firm’s quantity qj constant.

Note that such choice of pi necessarily affects pj (the demand for firm j which is analogous

to (B.1) and
∂pj
∂pi

=
b2
b1
.

Given the marginal production cost x, firm i’s profit-maximization with respect to pi

(instead of qi) yields firm i’s reaction function in price space. Noting that ∂qi/∂pi =

−b1 + b2∂p2/∂p1 = −b1 + b22/b1, the first-order condition is given by

qi + pi
∂qi
∂pi

= x
∂qi
∂pi

⇔a− b1pi + b2pj +
b22 − b21

b1
pi =

b22 − b21
b1

x

⇔ab1 + b1b2pj + (b22 − 2b21)pi = (b22 − b21)x

⇔pci =
1

2b21 − b22

[

ab1 + b1b2p
c
j + (b21 − b22)x

]

. (B.2)

The slope of this reaction function is
∂pj
∂pi

= (2b21 − b22)/b1b2 is greater than 1 since b1 > b2

is assumed.

Due to the symmetric structure of the model, we can analogously derive firm j’s reaction

function. In equilibrium, pi = pj, substituting this into (B.3), we obtain

pci = pcj =
ab1 + (b21 − b22)x

(b1 − b2)(2b1 + b2)
, qci = qcj =

(b1 + b2) [a− (b1 − b2)x]

2b1 + b2
.

In Bertrand competition, ∂qi/∂pi = −b1. Thus, firm i’s reaction function is derived by

qi + pi
∂qi
∂pi

−
∂qi
∂pi

x = 0

⇔a− b1pi + b2pj − b1pi + b1x = 0

⇔pbi =
a+ b1x+ b2p

b
j

2b1
. (B.3)

As is standard, the slope of this reaction function is greater than 1 in a (pi, pj) plane since

b1 > b2 is assumed. It is straightforward to check the slope of the Bertrand-reaction function

is steeper than that of the Cournot-reaction function.
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By symmetry, the price and sales quantity in the Bertrand equilibrium is as follows:

pbi = pbj =
a+ b1x

2b1 − b2
, qbj = qbj =

b1 [a− (b1 − b2)x]

2b1 − b2
. (B.4)

It is straightforward to check pbi < pci since

ab1 + (b21 − b22)x

2b21 − b22 − b1b2
>

a+ b1x

2b1 − b2

⇔[ab1 + (b21 − b22)x][2b1 − b2]− [a+ b1x][2b
2
1 − b22 − b1b2] > 0

⇔2ab21 − ab1b2 + (2b1 − b2)(b
2
1 − b22)x− 2ab21 + ab22 + ab1b2 − b1[2b

2
1 − b22 − b1b2]x > 0

⇔(2b31 − 2b1b
2
2 − b21b2 + b32)x+ ab22 − (2b31 − b1b

2
2 − b21b2)x > 0

⇔b22 [a− (b1 − b2)x] > 0,

so that the more differentiated the goods are (b2 ↓), the smaller is the difference between

the Cournot and Bertrand prices, and in the extreme sitution of independent goods (b2 = 0)

the difference is zero. The type of competition becomes less important, the less related the

goods are.

Consider first profits in Cournot competition:

πc
i = (pci − x)qci

=

[

ab1 + (b21 − b22)x

2b21 − b22 − b1b2
− x

]

qci

=

[

ab1 + (b21 − b22)x− (2b21 − b22 − b1b2)x

2b21 − b22 − b1b2

]

qci

= b1

[

a− (b1 − b2)x

2b21 − b22 − b1b2

]

qci = b1(b
2
1 − b22)

[

a− (b1 − b2)x

2b21 − b22 − b1b2

]2

=
b1

b21 − b22
(qci )

2

Then, profits in Bertrand competition is

πb
i = (pbi − x)qbi

=

[

a+ b1x

2b1 − b2
− x

]

qbi

=

[

a− (b1 − b2)x

2b1 − b2

]

qbi = b1

[

a− (b1 − b2)x

2b1 − b2

]2

=
(qbi )

2

b1

Since the goods are substitutes (β2 > 0), low prices mean low profits, and Cournot profits
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are larger than Bertrand profits: πc > πb.

b1
b21 − b22

(qci )
2 >

(qbi )
2

b1

⇔
b21

(b1 + b2)(b1 − b2)
>

[

b1(2b1 + b2)

(b1 + b2)(2b1 − b2)

]2

⇔
b1 + b2
b1 − b2

>

[

2b1 + b2
2b1 − b2

]2

⇔2b32 > 0,

which is true as long as b2 > 0.

B.2 The second-stage subgames

Consider the case of x = cs−cd first. When firm i reacts to firm j’s price with the Bertrand

prices, firm i’s profits is expressed by a function of pj as follows:

πb
i (pj |ki) = [rbi (pj |ki)− x]qi − cdki

=

(

a+ bpj + x

2
− x

)(

a+ bpj −
a+ bpj + x

2

)

− cdki =
1

4
(a− x+ bpj)

2 − cdki,

which is a quadratic function of pj and monotonically increasing in the domain of pj > 0.

When firm i reacts to firm j’s price with the status quo prices, firm i’s profits is expressed

by a function of pj as follows:

πc
i (pj |ki) = [Φi(pj |ki)− cs] ki = (a− ki − cs + bpj)ki,

which is a linear function of pj with the slope bki.

I claim that πb − πc ≥ 0 for all pj . To see this,

1

4
[a− (cs − cd) + bpj]

2 − cdki − (a− ki − cs + bpj)ki

=
1

4
[a− (cs − cd) + bpj]

2 − [a− (cs − cd) + bpj]ki + k2i

=

[

a− (cs − cd) + bpj
2

− ki

]2

≥ 0,

which reveals that πc is a tangent of πb and the tangent point is given by

(pj , pi) =

(

2ki − a+ (cs − cd)

b
, ki + cs − cd

)

.

At the tangent point, firm i’s capacity is entirely sold. Thus, for pj > [2ki−a+(cs− cd)]/b,

firm i cannot have products for disposal, which restricts the rival price range where firm i
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optimally disposes of its product such that pj < [2ki−a+(cs− cd)]/b, which coincides with

pj(1) in Figure 2.

For the case of x = cs + ce, π
b − πc ≥ 0 can be analogously shown. Likewise, πc is a

tangent of πb in the case of x = cs + ce and the tangent point is given by

(pj , pi) =

(

2ki − a+ cs + ce
b

, ki + cs + ce

)

.

At the tangent point, firm i’s capacity is entirely sold. Thus, only for the range of pj >

[2ki − a+ cs + ce]/b, capacity expansion is relevant. This is pj(3) in Figure 2. In sum, firm

i’s reaction schedule in the second-stage subgame, Ri(pj|ki), is as follows:

Ri(pj |ki) =











rbi (pj |cs − cd) for pj <
2ki−a+(cs−cd)

b

Φi(pj |ki) for 2ki−a+(cs−cd)
b

≤ pj ≤
2ki−a+cs+ce

b

rbi (pj |cs + ce) for pj >
2ki−a+cs+ce

b
.
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