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  Abstract  
An induced technological innovation, which may be biased as a result of policy 
orientation, can have a complex impact on the traded commodity, particularly in a 
market with highly differentiated products. Furthermore, especially for developing 
countries, most of which are based on agriculture, it is important to understanding that 
impact. This paper aims to study a recent policy change at the European Union, by 
using an Ex-Ante method and a displacement model. The policy change affected global 
apple exports, particularly for large exporters such as China, South Africa, Chile, and 
the United States. Considering data availability, the project focuses on the U.S. market 
to study the impact of the EU’s policy-induced, biased, and technological innovation in 
the U.S. agricultural industry. The results and policies implications are generally 
applicable to other major agricultural exporters, including those from developing 
countries. 
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Introduction 

The increasing global interdependency between countries has induced a new set 

of technological innovations as a result of food-safety issues and environmental policies 

in international trade (Hayami and Ruttan 1971; Cavallo and Mundlak 1982; Coeymans 

and Mundlak 1993; Carletto, De Janvry, and Sadoulet 1996; Macnaghten 2016). Among 

these technological innovations, some have specifically reformed the agricultural industry 

(Sunding and Zilberman 2000; Schut et al. 2016). These policy-induced technological 

innovations sometimes favor certain final commodities, which are most affected by the 

policy. This study examines the impact of policy-induced, biased, technological 

innovation in the agricultural industry, from the prospective of developing economies. 

Following a conceptual model on biased technology for differentiated products, the paper 

tests the impact of biased technological innovation, focusing on the apple industry. 

Furthermore, suggestions are provided to policy makers and agricultural producers. 

Technological innovation significantly impacts agricultural development (Schultz 

1964; Cochrane 1979) and several technological innovations have been induced by 

government policies and regulations (Sunding and Zilberman 2000). For example, tomato 

harvesters, which are biased toward labor input, were introduced after the Bracero 

Program1 which is implemented in the 1960s. In recent years, food-safety regulations and 

environmental concerns have led to more intensive research and alternatives to the 

widespread use of chemicals in many stages of the production process. Examples in 

agricultural and food markets include the emergence of integrated farm management 

systems and various biotechnologies (Sunding and Zilberman 2000). 

Internationally, food-safety regulation and environmental policies enacted by 
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international organizations and major trade destinations also induce biased technological 

innovation for countries to 1) fulfill global responsibility; 2) avoid any non-tariff barriers 

(NTBs) or meet Sanitary and Phytosanitary (SPS) standards; and 3) enjoy favorable 

prices created by trade constraints. For example, because of its ozone-depleting effects, 

the use of methyl bromide in agricultural production was scheduled to be banned in the 

U.S. in 2005 under the Montreal Protocol. As a widely used fumigator in the agricultural 

sector, especially in the strawberry industry, the economic impact of banning methyl 

bromide can be significant and complex. Industry groups that invested heavily in 

developing alternative fumigants were induced by the policy ban and biased toward 

fumigant input (Carter et al. 2005; Goodhue, Fennimore and Ajwa 2005). Related 

research studied market responses to the policy ban and to the adoption of alternatives 

among U.S. trading partners (Braun and Supkoff 1994; Duniway 2002; Byrd et al. 2005). 

Agricultural trade is especially important for developing countries because 

agricultural sectors compose a large percentage of their economies (IDE-JETRO and 

UNIDO 2013). In addition to various non-tariff measures faced by such countries when 

exporting to developed countries, technological innovation is another factor that could 

affect their export markets (Massa 2015; Maswana 2015). Because of strong economic 

support and research and development (R&D) investment, technological innovations tend 

to take place first in developed countries before spreading to developing countries. 

Although missing some exporting opportunities, developing countries take time to adopt 

technological innovations while observing the market’s response to policy changes and 

induced technology innovations in developed countries. Later, when the induced 

technology spreads to its own markets, the markets in developing countries can be 
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prepared and have more efficient responses. Producers then can reduce risks when 

adopting those new technologies. 

This paper provides a general framework to study market responses to 

policy-induced technological innovations, focusing on how biased technology affects 

differentiated products in different ways. In addition, it examines a specific example of a 

food-safety policy that caused technological innovation to avoid SPS barriers in 

international trade. Further, the paper analyzes the potential economic impact of this 

biased technology, incorporating product differentiation in U.S. apple markets. When 

studying this example, we derive parallel implications for developing countries from the 

prospects of innovative technologies, public R&D efforts in agricultural markets, and the 

development of agricultural trade policies. 

Policy Background 

With increasing food-safety concerns, the rules governing food production and 

trade have become more and more stringent. This is particularly true for the chemicals 

used in agriculture, which may harmfully affect humans if used excessively. To regulate 

food-safety, Maximum Residue Limits (MRLs) are applied to both domestic and foreign 

products. However, the heterogeneity of MRL across countries, which frequently causes 

trade frictions and disputes, has become a major NTB issue (Burnquist et al. 2011; Li and 

Beghin 2012; Xiong and Beghin 2012). 

A recent SPS standard initiated by the European Union (EU) was based on MRL. 

In August 2013, the EU lowered the MRL of Diphenylamine (DPA) on apples2 to 50 

times below the current standard because of food-safety concerns, allowing a phase-out 

period until March 2014. DPA is a chemical antioxidant widely applied to control 
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post-harvest, physiological storage disorders in apples. It is the most widely used 

post-harvest storage method in the apple industry because it is effective, easily accessible, 

and cost-saving. However, as one of the most popular fruits, apples have been 

consistently listed near to the top of the annual list of the “Dirty Dozen” because of high 

chemical residuals (Environmental Working Group 2017). Among chemical residuals, 

DPA is ranked as the second most often found residual. The EU initiated discussions 

about such a DPA regulation in 2009, and a final decision was made in 2013 after 

consulting with trading partners in the World Trade Organization. As one of the world’s 

leading apple-consuming and importing regions, the EU’s new MRL challenged apple 

producers and trade operators around the world. 

Because several EU member states have a relatively high consumption of apples, 

the new policy will significantly impact the global apple market, including not only EU 

member states but also third countries and global food producers. The strictness of the 

new MRLs not only rules out DPA-treated products but also any cross-contaminated 

products in the process of storage, packing, and shipping. In general, any industry that 

has not operated in a DPA-free environment for the last few years will find it difficult to 

meet the new requirements (USAEC 2013). Regarding this, concerns have been 

expressed by major apple-producing countries, such as Chile, China, South Africa, and 

the U.S. The EU’s new MRL bans DPA on apples in most cases. Since these new MRLs 

for DPA were implemented, the volume of apples exported to the EU has substantially 

decreased. Only a few shippers have designated special DPA-free facilities that meet the 

currently allowed MRLs and continue exporting to Europe (USDA FAS 2016). 

The EU’s apple market is important for numerous developing as well as 



7 
 

developed countries. Among the top 15 apple-exporting countries, by value (based on 

FAO 2016), are five developing countries: China, Chile, South Africa, Serbia, and 

Argentina. China, one of the top apple-producing and exporting countries, grows a 

variety of apples. The local wholesale prices of Fuji apples, a premium variety, have been 

relatively low and competitive in export markets. However, access to some major export 

markets, including the EU, has been hampered. In competition with that of Poland, the 

EU’s regional trade is one reason for stricter Non-tariff measures (NTMs), including the 

new MRLs of DPA (Sijmonsma 2016). To access the EU’s agricultural and food markets, 

China and other developing countries face strict food-safety regulations and standards 

(IDE UNIDO 2013). It is important to study as to how the EU regulates international 

food and agricultural trade to foster exports from developing countries. 

The U.S. Apple Market 

The EU has been an important market for U.S. apple exports, which have moved 

steadily upward since 1990 (Figure 1). The share of total exports to the EU has been 

around 7%, slightly increased over that of 2004. The U.K.—the largest import market in 

the EU—ranks among the top six U.S. apple-exporting destinations and accounts for 

about 69% of the total U.S. apple exports over the past three decades (USITC ITS 2010). 

Although Brexit (still in negotiation) could change these figures, other important EU 

markets, such as Finland, the Netherlands, Spain, and Sweden, exist for U.S.’s apple 

exports. 

Before 2013, SPS barriers existed for U.S. apples entering the EU. However, this 

new regulation could decrease Washington state’s apple exports to Europe by over 50% 

(Karst 2013). The East Coast of the U.S., another major apple-producing region, also 
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faces challenges. Complaints have been raised from various stakeholders in the apple 

industry. However, although it is risky to export apples to Europe, most apple industry 

participants would be reluctant to give up the European market. If the extra supply of 

apples were domestically absorbed, the U.S. apple market would be depressed. 

Furthermore, exploring new export destinations could be extremely expensive. In 

addition, the EU’s new MRL regulation has induced attention of other countries on the 

use of DPA in apples. Similar discussions about reducing DPA in apples have been taking 

place in other countries (Gillam 2014). Therefore, implementing new equipment, packing 

lines, and storage rooms may be a sound investment in the long run. If the trade rule 

becomes permanent, it may lead to a complete infrastructure overhaul, possibly causing 

the adoption of new technologies and modernization of agricultural practices (Sunding 

and Zilberman 2001). Although the overhaul brings benefits, it increases producers’ costs. 

The actual effect on producers’ welfare can be highly complex, changing according to 

location, time, and the degree of product differentiation. This paper focuses on measuring 

the impacts (primarily measuring welfare) of the EU’s policy change in the highly 

differentiated U.S. apple market. 

Producers’ Responses to Input Bans in Agricultural Markets 

Environmental and food-safety concerns have led to bans and other policy 

changes in the agricultural industry. Previous research has studied technological and 

non-technological alternatives to the system of banning substances or of becoming 

compliant to the new standards. Pesticide bans provide strong incentive for the 

development of alternatives by manufacturers and for the adoption of alternative 

strategies, including non-chemical treatments and biological control. Examples include 
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the elimination of dibromochloropropane, a chemical that enhanced the adoption of drip 

irrigation and enabled the application of alternatives (Sunding and Zimmerman 2001). 

Banning methyl bromide on nursery plants induced both chemical and non-chemical 

innovations to replace it (Braun and Supkoff 1994; Duniway 2002; Byrd et al. 2005; 

Carter et al. 2005; Goodhue, Fennimore and Ajwa 2005). These studies reveal that 

because of policies mandating certain technologies, in the long run, producers were 

benefited and rewarded for adopting them. However, short-run costs initially caused a 

reduction in welfare. At the macro level, the impact of the policies, together with biased 

technology, even affected agricultural trade patterns and production levels for certain 

regions (Lynch, Malcolm and Zilberman 2005). 

Regarding apples, no perfect chemical alternative for DPA currently exists. The 

only feasible way for apple producers to meet the EU’s MRL is farm management, which 

includes expediting or postponing harvests, shortening post-harvest periods, and 

enhancing sorting, packaging, transport, and other elements of the post-harvest stage 

(McPhee 1999). 

With public R&D supported by the U.S. government, a recently developed 

biomarker technology may prove to be a solution because of its easy accessibility, cost 

savings, and effectiveness in solving post-harvest apple storage problems. This metabolic 

and genetic biomarker could predict, diagnose, and distinguish potential post-harvest 

disorders, allowing marketers to release their products before the disorders evolve too far. 

It ensures that high-quality and disorder-free products remain available throughout the 

supply chain. The biomarker technology is an effective alternative of DPA in various 

ways. For instance, it shifts apple storage from “treatment-type” to more economically 
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feasible, sustainable, and management-based systems. A biomarker favors high-value, 

more susceptible apples in particular, and enhances their yield. To better evaluate the 

economics of biomarkers on high- and low-value commodities, while assessing the 

welfare of producers and consumers, this paper simulates the possible impact of 

biomarkers on the prices and quantities of apples at both the retail and farm levels,. 

Conceptual Model 

Biased technological innovation has played a significant role in social 

development and economic growth. Labor and capital savings plus neutral technological 

progress lead to different forms of economic growth (Ruttan and Hayami 1984; Lucas 

1988; Helpman 1998; Card and DiNardo 2002). Previous research on biased technology 

focused on relative factor prices, factor proportions in production, equilibrium analysis of 

technology adoption, and economic growth (Kennedy 1964; Romer 1990; Acemoglu 

2007). These papers studied biased technological innovation from producers’ 

perspectives on adopting such technology in order to minimize cost and to enhance firms’ 

ability to maximize profit. However, most of this work focuses on how biased technology 

directly impacts factors rather than how it impacts the output of using the technologically 

innovated biased factors. In addition, this paper studies how classical, biased 

technological innovation favors different outputs in industries with highly differentiated 

products. As these commodities require different factor amounts in production, they are 

affected by biased technological innovation in different ways; such innovation favors 

certain commodities through the factors toward which it is biased. 

The model is set up according to the basic set up of a producer profit 

maximization problem. Consider a producer who produces two products, 1y and 2y , 
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using two factors, 1x  and 2x . 1y  and 2y  are two different types of products of the 

same commodity (one is an imperfect substitution of the other). They are differentiated 

by certain commodity characteristics. Factor ratios are fixed but distinct in the production 

of 1y  and 2y . Producing both products requires two common factors 1x  and 2x . 

Product 1y  is relatively more intense in factor 1x  than product 2y . In other words, 

producing one unit of product 1y  requires more 1x  than producing the same amount of 

product 2y . In our case, suppose a technological innovation biased toward factor 1x  is 

used in the production of both 1y  and 2y . Consider the objective function of a 

profit-maximizing producer who operates in a competitive goods market, facing given 

factor and goods prices, as follows: 

1 2 1 2

1 2 2 1 2 1 2
1 2

1 1 1 1 2 2 2 2
1 1 2 1 2,

max    [ ( , ) ] [ ( , ) ]
x x

P g x x w x w x P g x x w x w xπ π π= + = − − + − −  

The superscript indicates output and the subscript represents input. P  is the output price. 

Products 1y  and 2y  have different prices and are not perfect substitutes for each other. 

g , the production function of output commodities for both the products, is a real-valued 

function and is twice continuously differentiable (the first derivative with respect to 1x  

is monotonic and increases its evaluation at 1x ). Products 1y  and 2y  are produced 

using the same production function, but product 1y  is 1x -intensive relative to 

product 2y . In addition, 1w  and 2w  are the prices of 1x  and 2x , respectively. 

Technological innovation enters the profit maximization problem by affecting the 

production function g . 

A biased technology that augments 1x  favors the production of commodity 1y , 
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which is relatively 1x -intensive in production. Adopting the technology increases the 

cost because the factor price of 1x  increases from 1w  to 1
tw . With the new technology, 

the producer who only produces product 1y  will increase his profit, 1π . This can be 

seen from the first-order condition. With the technology, the marginal product of factor 

1x  increases while the factor price of 1x  increases to 1
tw . For the 

biased-technology-favored commodity 1y , 
1

1 1 1
1 2 1( *, *) t

xP g x x w> . The producer could 

increase his profit 1π  by augmenting 1x . The marginal unit of 1x  contributes 

1

1 1 1
1 2( *, *)xP g x x  to revenue but costs the producer only 1

tw . Hence, using more 1x  in 

production would generate more revenue than the associated cost. This is a net addition to 

profit. The producer will continue doing this until the first-order condition holds with 

equality again. This process is shown in Figure 2a. With biased technology, the initial 

equilibrium point for profit maximization ( 1 1
1 2*, *x x ) moves to ( 1 1

1 2* ', * 'x x ), which is the 

new tangent point of the new iso-cost and iso-quant lines. The slope of the iso-cost line 

changes due to the increased factor price of 1
tw . The new iso-quant line is not parallel to 

the original one because of the 1x -augmenting technology, indicating that the marginal 

product of 1x  increases faster than that of 2x . In the new equilibrium, the producer 

increases his use of 1x  and produces more 1y  for a higher profit. 

On the other hand, with the technology biased toward factor 1x , the producer 

who only produces 2y  will earn less or even experience a drop in profit 2π . The reason 

behind this is that as the quality and productivity of product 1y  improves with the new 

technology, its price increases and the price of product 2y  decreases, assuming that only 
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two products exist for the same commodity. Meanwhile, given the production function 

1 1

2 2 1 1
1 2 1 2( *, *) ( *, *)x xg x x g x x< , and depending on the value of 1

tw , it is possible that 

product 2y  has a first-order condition 
1

2 2 2
1 2 1( *, *) t

xP g x x w< , the value of the marginal 

product of 1x , less its market price. The producer profit 2π  decreases because the 

additional revenue of one more unit of 1x  is less than the marginal cost of using one 

more unit of 1x . This process is shown in Figure 2b. With biased technology, the initial 

equilibrium point for profit maximization ( 2 2
1 2*, *x x ) moves to ( 2 2

1 2* ', * 'x x ), which is the 

new tangent point of the new iso-cost and iso-quant lines. The producer continues 

production in order to reach a new profit maximization, where the use of 1x  is actually 

reduced. If the 2π  profit does not decrease initially, it will decrease later. As product 1y  

increases profits, resources will move to produce 1y  from 2y . Gradually, the producer 

who only produces 2y  will see lower profits. 

To balance the risks of technology adoption, producers benefit from including 

both products. Whether the producers of both the products will benefit from biased 

technological innovation depends on their production shares of 1y  and 2y . On the basis 

of the above conceptual model, this paper proposes the following hypothesis: 

H0: Technological innovation biases favor intensive product factors. However, this 

could lower the manufacturing of products with less intensive biased factors. 

In the following section, this paper will test this hypothesis using a simulation analysis. 

To avoid potential profit loss caused by the adoption of new technology, producers could 

diversify their product lineup to include both commodities, which would show gains and 

losses. 
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A simulation model is developed to test the hypothesis, using data from the U.S. 

apple industry. Apple production consists of marketing and farming, and storage is part of 

farming. The biomarker is biased toward marketing in apple production. As a highly 

differentiated commodity, apples are susceptible to post-harvest disorders. These highly 

susceptible apples are more valuable, with higher market prices, whereas non-susceptible 

apples are less valuable (House 2012). Therefore, in the apple industry, the biomarker, 

which favors the former type of apples, will increase the profits and welfare of apple 

producers. The biomarker will have a smaller impact on less-valuable apples and their 

producers. To avoid losing the biomarker, apple producers could produce high-value and 

less-valuable apples. This paper develops an equilibrium displacement model of the apple 

industry in order to simulate the impact of biased technology on different stakeholders in 

the industry, in specific producers of different apple varieties. 

Modeling the Apple Industry 

As biomarker technology is still in the testing stage, an ex-ante approach is 

adopted, following the frameworks typically used by agricultural economists to analyze 

new technologies. Because of highly differentiated characteristics across products in the 

apple market, this paper explicitly takes into account the interrelationships 1) between 

input usage in different output markets; 2) between different categories of apples, defined 

by variety and grade; and 3) between domestic demand and export demand. It also 

considers exogenous policy shifts in input markets, technology adoption that causes shifts 

in input markets, and long-run shifts in consumer demand in output markets. 

To better study the impact of policy-induced technological innovations that are 

biased toward certain policy factors or commodities in the agricultural sector, special 
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attention must be paid to the degree of agricultural product differentiation. “Over the 

years, product differentiation in agriculture has increased along with an increase in the 

importance of factors beyond the farm gate and within specialized agribusiness” 

(Sunding and Zilberman 2000). This evolution is affecting the nature and analysis of 

agricultural research. When a policy-induced, biased technology enters the economy, it is 

important to study the vertical market structure of agriculture and how farm-level 

innovation may contribute to changes in both downstream and upstream sectors (Alston, 

Sexton and Zhang 1997; Hamilton and Sunding 1998). 

The model is based on previous simulation studies that evaluate the impact of the 

biotechnologies that are adopted in agricultural markets (Binswanger 1974; Heuth and 

Just 1987; Lemieux and Wohlgenant 1989) and extended to incorporate biased 

technological impacts in multi-input and multi-output models. Here, exogenous shocks 

are imposed by considering the vertical linkage of multi-input and multi-output markets. 

The linear elasticity model is compatible with parameter values selected through 

econometric or programming approaches. In addition to the agricultural industry’s major 

empirical contributions in policy making and technological innovation, this paper’s 

analysis could be generally applied to other markets with highly differentiated products. 

As a widely consumed and popular commodity, about 20 major varieties of apples 

are planted in the U.S. Stakeholders in the commercial apple industry include apple 

orchards, storage carriers, packing facilitators, and wholesalers and retailers in 

international markets. As shown in Figure 3, this model simplifies the apple market. As 

this paper focuses on the EU–U.S. apple trade, subject to the EU’s SPS regulation in the 

output market, representative varieties of apples are selected as follows: 1) varieties 
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exported to the EU market (Empire, Gala, Honey Crisp, and Granny Smith) and 2) 

varieties that suffer most from post-harvest disorders (Honey Crisp, Granny Smith, and 

Empire). Of the four varieties of apples exported from the U.S. to the EU, three are 

highly susceptible. These varieties suffer from the following disorders: Empire (browning, 

external CO2 injury), Honey Crisp (soft scald), and Granny Smith (superficial scald). 

Gala is a non-susceptible variety. Empire, Honey Crisp, and Granny Smith apples are 

higher-value apples, garnering higher market prices, whereas Gala is relatively less 

expensive. Therefore, the former group is considered high-value (H-type) and the latter is 

low-value (L-type). 

In addition to variety-based classification, apples are also categorized by grade. 

Apple grades are based on size, shape, color, and overall quality. Higher-grade (E) apples 

are sold as a fresh fruit while culls (C) usually are processed to make juice, jam, and 

apple sauce. Combining these classifications, this paper studies four types of apples: 

higher-value high-grade (HE), higher-value culls (HC), lower-value low-grade (LE), and 

lower-value culls (LC). The high- and low-value classification of apples directly captures 

biomarkers’ biased impact of preferring storage as an input. Further grade classification 

explicitly studies policy and induced technology impacts. Higher-grade, exported apples 

are directly affected by the EU’s SPS regulation, while culls (C) are not. In addition, 

induced, biased technological innovations (i.e., a biomarker) could “upgrade” culls to 

higher-grade (E) apples. The detailed classification of apples is used to capture 

product-level details and substitution effects in the apple market. 

Our model includes two inputs: farm inputs and marketing inputs. Storage of 

apples is a major component of farm input, and apple varieties determine the required 



17 
 

farm input. Farm inputs are used for both higher-value (FH) and lower-value apples (FL). 

Apple grades determine how much marketing input is needed. Marketing inputs are used 

for higher-grade apples (ME) and culls (MC). In general, higher-grade apples require less 

marketing input than culls (Stewart et al. 2011). Considering this fixed-factor proportion 

assumption, for a given grade, higher-value apples use more farm input per unit (which 

includes storage) than lower-value apples. In other words, FH is greater than FL. For a 

given variety, higher-grade apples use less marketing input than culls, and thus, ME is 

less than MC. 

The simulation model was developed to assess the impact of exogenous policy 

and technological innovation shocks in the highly differentiated U.S. apple market’s open 

economy. A set of basic equations is used to describe national demand, export demand, 

supply, and the corresponding factor markets. This equilibrium displacement model 

includes markets for four outputs and two factors. As a simplification of the U.S. apple 

market, it captures critical characteristics found in the industry and provides a useful 

framework to examine the impact of policy change and biased technological innovation. 

The model is as follows: 

(1) ( , )i i iQD f P A=  
(2) ( , )i i iQX g P AX=  
(3) i i iQS QD QX= +  
(4) ( )i iP MC W=  

1

( ,1)(5)
iN

il
l

i l

c WXD QS
W=

∂
=

∂∑  

(6) ( , )l l l lXS h W B=  
(7) l lXD XS=  
 

Apple output is denoted by superscript i and input is denoted by subscript l. In the 

output retail/wholesale market, variable QD  represents domestic apple demand, with an 
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exogenous demand shift A in the output market. Variable QX  represents apples 

exported abroad (international and country-specific apple demand), subject to an 

exogenous shift AX. Variable P  is an apple price vector, which assumes that domestic 

prices equal the world price. Variable QS  represents apple supply. For the two input 

markets, XS  represents input supply and XD  is a derived input demand (a 

constant-output, demand-input function). Factor prices of farm and marketing inputs are 

denoted by W . The adoption of new technology biomarkers brings an exogenous shift to 

the input supply, represented by B . In equations (4) and (5), MC  is the marginal cost 

function, and ( ,1)i
lc W  denotes the unit cost function. 

Equations (1) and (2) represent domestic and export demand for output apple i. 

Equation (3) shows the clearing condition of the apple output market. Apple i’s retail and 

wholesale price equals the marginal cost of producing it. Equation (4) shows the 

competitive equilibrium, which is the price linkage between output and input markets. 

Equation (5) is the derived demand function of input l. The summation of i
lXD  across 

all varieties of apples generates total input demand l, which indicates the input market 

equilibrium. Equation (6) is the supply of input l. The last equation (7) is the clearing 

condition of the input market. 

For the simulation, differentiating the above model yields equation (1’) to 

equation (7’). Equilibrium adjustments can be simulated by exogenously specifying 

changes in the shift parameters. In the following equations, for any variable V, notation 

E(V) represents dV
V

, where d is the total differential. 
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1
(1') EQD EP

N
i ij j i

j
η α

=

= +∑  

1
(2 ') EQX EP

N
i ij j i

j
x xη α

=

= +∑  

(3') EQ EQD (1 )EQXi i i i iS S S= + −  

1
(4 ') EP EW

M
i i

l l
l
γ

=

=∑  

1 1
(5 ') EXD ( EW EQS )

N M
i i i i

l l k lk k
i k
λ γ σ

= =

= +∑ ∑  

(6 ') EXS EWl l l lε β= +  
  

(7 ') EXD EXSl l=  

Notations for share and elasticity parameter values used in the simulation are reported in 

Table 1. A detailed definition of the model’s parameters is provided in the following 

section. 

Data and Parameters 

Apple data from the Washington Grower Clearing House for 2011–20123 are used 

in the model’s simulation4. Weighted average monthly prices at “Free On Board” 

shipping points are used on the basis of the price information received from Washington 

apple growers and marketing firms in the area, considering sales price adjustments. A 

calculation is made to obtain the annual price, and a similar calculation is applied for 

apple quantities in two seasons. All quantities are measured in “Cargo,” which contains 

1000 40-pound cartons. As mentioned before, three varieties, Empire, Honey Crisp, and 

Granny Smith, were selected as high-value (H) apples. Price and quantity data for 

high-value apples were calculated and weighted by the market share of each variety. For 

apple grade, Extra Fancy and Fancy (including U.S. #1) apples were considered of the 

higher-grade (E). No direct data about culls (C) are available. Therefore, an average 

[packout rate]5 of 85% was used to calculate cull quantity on the basis of the data 
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regarding higher-grade apples. Table 2, which shows the data used in the model, lists the 

quantity and price data of the four outputs and two inputs used in each output production. 

Given the apple prices and quantity data for retail and wholesale markets, input 

prices and quantity data are calculated on the basis of a fixed-factor proportion 

assumption. Isolating apple output by variety is done to distribute the total farm input, 

which is distinguished only by variety. Similarly, isolating apple output by grade is done 

to distribute marketing inputs, which vary only by grade. As per the model’s setup, the 

key parameters in evaluating the economic impact of the biomarker are (1) the elasticities 

of supply, demand, and export demand; (2) cost and industry share; and (3) policy shocks 

on the output demand side and shocks from adopting a new technology on the factor 

supply side. 

Parameters in (1) were first obtained from baseline values in relevant literature. 

Then, following the studies by Davis and Espinoza (1998, 2000), Griffiths and Zhao 

(2000), Zhao et al. (2000), and Rickard and Lei (2011), I applied prior distributions to 

these parameters for a sensitivity analysis. I set the baseline parameter as the central 

tendency and specified a variance of 0.04 to develop beta (3,3) distributions (Brester, 

Marsh and Atwood 2004). The beta distribution is ideal for generating elasticity 

parameters because it is continuous and symmetrical when parameters are equal and 

equivalent to a uniform distribution when parameters equal to 1. It is often used to model 

events that are constrained and take place within an interval defined by minimum and 

maximum values. The beta distribution selected here constrains demand elasticities to be 

negative and supply elasticity to be positive. Iterated 1,000 times, random values are 

drawn for the parameters to generate empirical distribution results. 
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Following previous estimates about supply elasticity from previous literature 

(Nerlove and Addison 1958; Gardner 1979), the baseline supply elasticity parameter for 

apples was set to 0.5 because the supply of fruit is relatively inelastic. Furthermore, all 

cross-price elasticities of supply are set to zero because apples are perennial crops 

(Rickard and Lei 2011). 

The domestic matrices of own- and cross-price elasticities of apple demand iiη  

and ijη are calculated following the Armington specification (Armington 1969). 

(8)      - (1- )    ii i iη ς η ς σ=  

(9)      ( )ij jη ς η σ= +  

The Armington specification is typically used for calculating the elasticity of 

differentiated commodities. It extends the homogeneous goods model to examine the 

demand response for differentiated goods (Rickard and Lei 2011). In this paper, it is used 

to define the matrix of own- and cross-price elasticities of apple demand, differentiated 

by both variety and grade. In equations (8) and (9), the overall demand elasticity η  and 

the elasticity of substitution across the four different apple types σ  are set as equal to 

baseline values from the literature. The baseline value of the overall demand elasticity η  

is based on the demand elasticity of the top eight apple varieties,6 as estimated by Richard 

and Patterson (2000). I averaged and weighted them by the market share of these 

varieties of apple, and the value was calculated to be −0.762. The baseline value of the 

substitution across apples, σ , is set equal to 1, following range estimates used in the 

literature on agricultural economics (Alston, Gray and Sumner 1994; Rickard and Lei 

2011). Substitution between fruit products has not been directly estimated and is not 

available in previous literature. Simulation results are relatively independent of the 
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baseline elasticity of substitution, and results are robust across a range of plausible 

values. 

Several studies (e.g., Alston, Gray and Sumner 1994) have discussed the 

limitations of the Armington specification. However, based on the specific differentiation 

of apples in this paper and data availability, the Armington specification is an appropriate 

method to generate the matrices of elasticities. The same method is applied for export 

demand elasticity. The only difference in this specification, with regard to the Arlington 

specification, is the overall demand elasticity for exports, which is set to –1.5—more 

elastic than domestic estimation—on the basis of the estimates by the U.S. International 

Trade Commission (2010). On an average, between 2004 and 2008, about 8%–16% of 

U.S. apple production was exported. Simulation results are robust for demand elasticity’s 

chosen value, within a range of −1.0–−2.5. 

Parameters in (2) are shares calculated from the data on quantity and by applying 

certain assumptions. The share of consumption S  derives from the apple export studies 

by the United States International Trade Commission (USITC) (2010), from the data in 

Table 2, and by following assumptions and common knowledge supplied by stakeholders 

in the apple industry (Washington Grower House 2012; Reed, Elitzak and Wohlgenant 

2002). The cost share of input i
lγ  is calculated following the “20% and 80%” rule 

(Stewart et al. 2011), which states that for each dollar invested in apple production, 80 

cents are used for marketing and 20 cents are used for farm production. For industry 

share i
lλ , I assume that higher grades of apples usually need less marketing than the 

lower ones. Higher-grade apples require a smaller share for marketing (65%) but a higher 

one for farming (35%). The cull percentages are 85% and 15%, respectively. The Allen 
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elasticity of substitution i
lkσ  is assumed to be 0 across different inputs on the basis of 

the fixed-factor proportion assumption, and 1 for the same input (Sumner, Lee and 

Hallstrom 1999; Rickard and Lei 2011). 

Parameters in (3) represent exogenous shocks. Parameter iα  describes the EU’s 

SPS regulation change and estimates a policy shock in the simulation model. Considering 

that new SPS regulations were implemented on March 2, 2014, no accurate data is 

available to estimate this parameter. About 23% U.S. apple exports go to the European 

market (USITC 2010). With the new SPS regulation, exports from the two major U.S. 

apple-growing and exporting states, Washington and New York, are expected to drop 

noticeably. Between 8% and 16% of U.S. apple production was exported annually 

between 2004 and 2008 (USITC 2010). The maximum 16% figure produces a calculated 

5% drop in apple demand. As higher-value apples are susceptible to post-harvest 

disorders and are being exported to the EU, high-value and higher-grade apples will get 

the most affected by the policy shock. I assume that the same shock will affect export 

demand for U.S. apples. 

Parameter iβ , which describes technological change as an exogenous variable, is 

used in the simulation model to introduce shocks caused by biased technological 

innovation. The biomarker increases marginal farm input products. On the other hand, 

apple producers pay to buy the biomarker and thus the difference between them will be a 

net shock applied to farm input. Due to limited data availability and the complexity of the 

impact, some assumptions and approximations are made in the calculation. A biomarker 

could “upgrade” low-grade apples to higher-grade apples, i.e., from culls to high-value 

apples. Given an 85% packout rate, 50% culls can be upgraded to higher-grade apples 
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after applying the biomarker in the post-harvest stage.7 As a result, the new packout will 

be 92.5%, with a 7.5% improvement. The biomarker has not been priced yet because 

price data are required to understand consumers’ willingness to pay. For now, based on 

the information provided by the biomarker developer, production cost is quite low. I 

assume that adopting the biomarker will only increase farm input cost by 2.5%. Therefore, 

for higher-value apples, the net benefit of farm input for adopting technological 

innovation is 5%. 

Measuring Welfare 

Simulated changes are reported for prices and quantities as a result of the EU’s 

policy change. Welfare changes accruing to consumers and producers are measured using 

information about initial product prices and simulated changes in product prices and 

quantities. To obtain a mean prediction of changes in surplus measures, 1,000 iterations 

are repeated in the simulation model. Each iteration draws values for elasticity 

parameters from empirical distributions that rely on estimates in the literature while 

initial prices and quantities remain the same across all iterations. As welfare is calculated 

on the basis of a range of elasticities with fixed prices and quantities, welfare results as 

well are generated as distributions. Studying welfare results provides a better 

understanding of the impact of technological changes. 

The following equations are used to calculate welfare accruing to consumers of 

product i and to producers from factor l. Policy changes or technological innovations in 

the market are reflected by the variables EP, EQD, EW, and EXS. Therefore, the 

following equations capture changes in welfare: 

i i i i iΔCS  = -P QD EP [1 + 0.5EQD ]       (10)  
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l l l l lΔPS  = W XS EW [1 + 0.5EXS ]        (11)  

The initial price and quantity of apple i and the initial price and quantity of factor l are 

shown in Table 2. Factor quantities are calculated on the basis of output quantities, 

following the fixed-factor assumption, and each value is weighted by market shares of 

different apples. Factor prices are calculated according to the “80%/20%” rule based on 

output prices and are weighted by market share. 

Results and Discussion 

Below are the results for four simulations: 

1. A 5% decrease in export demand for high-value, higher-grade apples because of 

the EU’s SPS regulation change. No other changes to apples occur. 

2. A 5% increase in the farm input for high-value apples because of new, biased 

technology. No other changes to apples occur. 

3. Simulations 1 and 2 simultaneously 

4. With consumers recognizing biomarker-treated apples, a 15% increase in both 

domestic and export demand takes place for high-value and higher-grade apples, 

in conjunction with Simulation 2. 

Simulation 1 captures the EU’s SPS impact on the U.S. apple market. A 5% 

exogenous shock is applied to high-value, higher-grade apples, because this type of 

apples, highly susceptible to post-harvest disorders, is the most affected by the change. 

Using DPA is a must in its storage. Higher-grade, fresh apples are primarily exported to 

the European market (USITC 2010). 

Simulation 2 adopts new biomarker technology.8 The 5% net biomarker benefit is 

imposed on farm input, specifically on farm inputs used for higher-grade apples because 
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benefits primarily derive from culls upgraded to higher-grade apples. 

Simulation 3 compares policy and technology impacts to determine the 

effectiveness of biomarker technology. Can it be an effective, alternative method to avoid 

using DPA, so that U.S. apples can comply with the new MRL set up by the EU? Will it 

be able to mitigate the impact of certain policies in the U.S. apple market? If so, to what 

extent? Simulation 4 shows the long-run result. If the biomarker is an effective alternative 

for the DPA, the U.S. market will see no more policy shocks. Given the function of the 

biomarker, it should be well accepted by consumers because treated apples will not suffer 

post-harvest disorders (i.e., flesh browning, superficial scalding, and other issues). This 

will increase consumer demand for such good-quality apples. Although consumer 

demand for this type of apples may change, lower-grade apples also are expected to 

experience a quality upgrade with biomarkers. Therefore, the supply of different types of 

apples changes. Given that the share of higher-grade apples of each variety is 85%, and 

the market share of the three high-value varieties selected here is about 17%, a 

conservative estimate of the increase in consumer demand is set to 15%. 

Each simulation imposes exogenous shock(s) to the system of equations and 

generates empirical distributions for changes in prices and quantities as well as welfare 

changes for the four apple outputs and the two input factors used in the four outputs. 

Empirical distributions are used to calculate the mean and a 95% confidence interval for 

price, quantity, and welfare variables across 1,000 iterations (more iterations have been 

calculated but the results do not differ greatly. Therefore, I report the mean value in the 

results table, plus a 95% confidence interval). 

Focusing on the supply side, Table 3 shows the price and quantity effects of apple 
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output and input markets. The four columns correspond to each of the simulation 

scenarios. The first column represents when the U.S. apple market is subject to the policy 

change. The EU’s SPS regulation change affects apples with post-harvest disorder 

problems exported to the EU. With a natural decrease in apple export demand from the 

European market, the supply of high-value, higher-grade apple product declines by 

16.73%. This drop is distributed into a 13.98% decrease in farm input and a 0.12% 

increase in marketing input. The decreased farm input supply also affects high-value culls 

by −0.58% because high-value apples have intensive farm input. Decreasing the supply 

of all high-value apples leads to increasing production of low-value apples in both the 

grades, in the form of consumer substitutes. Therefore, the policy shock decreases supply 

(and demand) for all high-value exported apples but has a positive effect on low-value 

apples. The derived demand of farm supply decreases, principally because of lower MRL 

in the EU. Before an effective alternative is introduced, this trend is expected to continue. 

In the second scenario, adopting a biased technological innovation increases the 

farm factor supply of high-value apples by 2.34%. Together with marketing inputs, the 

retail-level supply of three types of apples (excluding high-value culls) increases. A lower 

supply of high-value culls proves the effectiveness of the biomarker, which “upgrades” 

apples by avoiding further post-harvest disorder problems. This “upgrading” partly 

contributes to increased high-value, higher-grade supply. Retail prices of apples change 

accordingly, depending on the equilibrium status of the retail market. When biomarker 

technology is the only shock to the apple industry, the new technology seems to be an 

effective alternative to banning farm input. 

It is meaningful to compare the results of simulations 2 and 3 in order to 
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emphasize the bias of technological innovation. Despite the presence of both policy 

changes and a biased technology, high-value apple supplies still drop (by −12.19% and 

−0.02%). However, these lower grades for high-value apples are smaller than the results 

in Simulation 1. Moreover, all the results listed in column 3 have the same sign as those 

in column 1, but the absolute values of all the negative changes are smaller in Simulation 

3 compared to those in Simulation 1, and the values of all the positive changes are larger 

than those in Simulation 1. Therefore, biomarker technology effectively mitigates the 

effects of the EU policy ban on the U.S. apple market. 

In the long run (Simulation 4), a biomarker is accepted by consumers, which 

stimulates the production of better-quality and higher-grade apples. With positive impacts 

from both the biased technology (+5%) and consumer recognition (+15%) on high-value, 

high-grade apples, farm supplies of high-value apples increases by 3.49% (compared to 

2.34% with biomarker adoption only in Simulation 2). Low-value apple production 

decreases by 0.53% (compared to −0.01% with the biomarker alone in Simulation 2). 

Meanwhile, 0.03% less marketing input is needed to sell high-value apple products, but 

0.04% more is required for low-value apple products. Apple producers have to put more 

effort into promoting the sale of low-value apples. This result can also be observed at the 

retail level. Both the grades of high-value apples increase—4.18% for higher-grade 

apples and 0.15% for culls, whereas decreases of 0.65% and 0.003% occur for low-value 

higher-grade apples and low-value culls, respectively. More high-value apples and fewer 

low-value apples are demanded and supplied. As a result, prices of high-value 

higher-grade apples increase by 1.98%, which lead to higher profits for producers. 

In addition to price and quantity results, the four simulations in Table 4 present 
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welfare changes. In the first column, the SPS regulation change causes farm input 

producers to lose $7.86 million from high-value apple markets and $360,000 from 

low-value markets. Marketing input producers gain a surplus of $11.32 million from 

higher-grade apples but lose $20 million from culls. Producers are worse off in general, 

especially those who produce high-value higher-grade apples that are affected by the EU 

policy ban. Consumers of high-value higher-grade apples lose $79.91 million because of 

the policy change, for two reasons: 1) they realize the health risks of consuming 

high-value higher-grade apples and 2) fewer high-value higher-grade apples are available. 

Thus, they might be better off consuming low-value apples. 

Producers who market high-value apples, using farm inputs with biased 

technology, are more profitable, earning $1.13 million. While the producers of low-value 

apples are also better off, their profits increase by a lower $180,000. In the third scenario, 

which incorporates both policy and technology shocks, the impact of biased technology 

becomes a more dominant measurement of welfare. With a policy specifically imposed 

on high-value higher-grade apples, the biomarker benefits producers of high-value apples 

but harms the producers of low-value apples. The producer surplus for the former is 

$14.91 million and negative $4.56 million for the latter. Furthermore, in Simulation 4, 

with greater consumer demand for high-value apples, the producer surplus is $24.26 

million, much more than in Simulation 2. Higher demand for high-value higher-grade 

apples helps these apples’ producers. At the same time, producers of low-value apples 

suffer a loss of $5.82 million. The 1.98% retail price increase of high-value higher-grade 

apples costs consumers about $474.9 million. 

Implication and Conclusions 



30 
 

This paper focuses on the relation between trade policy and biased technological 

innovation in agricultural markets in order to examine how market production and 

consumption influences stakeholders’ welfare. While it focuses on the U.S. apple market, 

its conclusions and implications can be applied to other countries, including developing 

countries. The EU’s altered SPS regulation on imported apples has directly affected 

storage of apples (farm input). A biased technological innovation is a potential solution to 

the policy change. This paper evaluates the impact of trade policy changes and 

corresponding technology adoptions to highlight the effects of agricultural trade in a 

market with highly differentiated products. In addition, it tests a hypothesis about biased 

technology to provide suggestions to exporters and stakeholders about production 

decisions and technology adoption. 

Simulation 1 examines the impact of a European trade policy change on the U.S. 

apple market. Although the EU market accounts for only about 16% of U.S. apple exports, 

as a result of the complexity of NTBs in agricultural trade, it has a large impact on the 

U.S. domestic market. As long as U.S. apple producers continue exporting to the 

European market, they will have to rebuild storage, sorting, packaging, and transportation 

facilities to avoid cross-contamination and to meet the EU’s new MRL. Producers who 

achieve this will be able to earn substantial profits. Other producers will have to 

completely forfeit the EU market. 

The policy has a negative impact on both the U.S. apple input and output markets. 

It causes welfare losses for producers who adopt the policy affecting farm input and for 

consumers who purchase exported, high-value higher-grade apples. The U.S. government 

and other stakeholders in the apple industry should actively seek solutions to avoid the 
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potential losses caused by this trade policy. In addition to looking for alternative storage 

methods, U.S. apple producers should explore other export destinations. 

Simulations 2, 3, and 4 show the effectiveness of biased technological innovation 

by studying its impact on quantity, price, and the welfare of stakeholders. The biomarker 

effectively increases the supply of high-value apples at both farm and retail levels by 

enhancing the efficiency of post-harvest apple storage. Future acceptance of this new 

technology could accelerate consumer demand for high-value higher-grade apples. 

Development of such a technology should be supported by both the public and private 

sectors. Technological innovation is particularly important in the agricultural industry, 

whose production always involves numerous factors (Binswanger 1974). 

Simulations 2, 3, and 4 also test Hypothesis H0. Producers of high-value apples 

enjoy a welfare gain in all three scenarios. Those who produce low-value apples suffer a 

welfare loss. (This is consistent with H0.) In the presence of a biased technology, 

producers in the industry should increase the production of commodities that are favored 

by the technology, decreasing the production of other commodities. This would maximize 

their welfare and minimize the risks from exogenous shocks, such as policy and 

regulation changes, market failures, and natural disasters. The initial cost to shift 

production would not be extremely high when the market includes highly differentiated 

products. In addition, factors required for production would largely remain the same. 

To sum up, changes in a country’s trade policy will affect its trading partners. One 

way to maintain trade is technological innovation. Policy-induced technologies may be 

biased toward certain production aspects of a traded commodity to be in line with altered 

trade policies. In our case, to meet the new MRL of DPA (a chemical used as a farm 
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input), the new technology is biased toward farm input. Biased technology will bring 

shifts in production and consumption. Particularly when markets include highly 

differentiated products, these shifts are complex due to substitution effects between 

outputs and inputs and the vertical linkage between input and output markets. However, 

added complexity also provides producers opportunities to avoid loss and maintain a 

surplus. Exporters whose production is affected mostly by trade policy change will 

experience losses if no effective alternative technology can be found. Alternatively, 

producers could shift their production more toward products that take advantage of the 

policy and the biased technology. In a market with highly differentiated products and an 

effective policy-induced technology, a trade policy shock could become a net benefit for 

exporters who adopt the appropriate technologies. 

Developing countries, which also may face the same policy change and 

policy-induced technological innovation, can learn from developed countries' experience. 

However, some policy-induced technological innovations, while facilitating trade and 

fostering economic growth, may bring challenges to the economy, the country’s 

well-being, and the environment (UNCTAD 2004). Developing countries need to be 

aware of the trade-offs arising from technological innovations (Massa 2015). 
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End Notes 
1 The termination of the Bracero Program resulted in reduced availability of inexpensive 
immigrant labor for California and Florida growers. 
2 COMMISSION REGULATION (EU) No 772/2013 of 8 August 2013 amending 
Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of 
the Council as regards maximum residue levels for diphenylamine in or on certain 
products. Pear is another product targeted in the regulation, in addition to apples. 
3 Washington Grower Clearing House, 55th Annual Apple Price Summary for the 
2011-2012 Marketing Season 
4 Only non-organic apples are considered in this research because organic apples do not 
apply DPA for post-harvest storage. 
5 “The percentage of fruit deemed acceptable for a fresh market outlet is known as the 
“packout percentage.” For example, if a load of navel oranges has a packout of 64%, this 
means that out of 100 navel oranges, 64 were deemed acceptable for the fresh market. 
The remaining 36 were sorted out and sent to the processing plant.” (Muraro, Roka and 
Timpner 2007) 
6 Red Delicious, Golden Delicious, Granny Smith, Fuji, Gala, Braeburn, Jongold, and 
Rome. 
7 The statement that 50% culls are upgraded into a higher-grade is a general assumption 

based on their composition. Culls are small, abnormally shaped apples. This irregular 
appearance is caused by post-harvest disorders (Rules and Regulations Relating To NEW 
YORK STATE APPLE GRADES. Available at: 
http://www.agriculture.ny.gov/FS/pdfs/farmcircs/circ859.pdf) 
8 Full adoption is assumed here. 
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Source: FAOSTAT 
Figure 1. U.S. fresh apple exports 
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Figure 2. Profit maximization of products 1y  and 2y
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Figure 3. Apple market structure 
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Table 1. Parameter Specifications 
Symbol Definitions Formula Source 

ijη  Apple i domestic 
elasticity of demand 
with respect to the 
price of apple j 

i

j

j

i
ij

QD
P

P
QD

⋅
∂
∂

=η  
Armington Specification 
with random drawn  key 
parameters from prior 
distribution  

ijxη  Apple i export 
elasticity of demand 
with respect to the 
price of apple j 

i

j

j

i
ij

QX
P

P
QXx ⋅
∂
∂

=η  
Armington Specification 
with random drawn  key 
parameters from prior 
distribution 

iS  Domestic consumption 
share of US apple 
production 

- Calculated with industry 
data 

i
lγ  Cost share of input l in 

the production of 
apple i 

ii
lli

l QP
XW

=γ  
Calculated with industry 
data 

i
lλ  Industry share of input 

l used in the 
production of apple i l

i
li

l X
X

=λ  
Literature and industry 
estimation 

i
lkσ  Allen elasticity of 

substitution between 
input land k kl

i
lk MRTSd

kld
ln

)ln(
=σ 1 Assumption 

lε  Supply elasticity of 
input l 

l

l

l

lll
l X

W
W

BWh
⋅

∂
∂

=
),(

ε  
Random draw based on 
prior distribution 

iα  Percentage change in 
consumer demand for 
apple i from adoption 
of bio-marker 

i
i

i

i

i
i EA

QD
A

A
QD
∂
∂

=α
 

Calculated based on 
industry information 

lβ  Percentage change in 
costs due to adoption 
of bio-marker 

l
l

l

l

l
l EB

X
B

B
h
∂
∂

=β  
Calculated based on 
industry information 

1MRTSkl is the marginal rate of technical substitution which equals the ratio between marginal 
product of input k and input l 
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Table 2. Apple and Factor Prices and Quantities 
Apple Quantity  Price 

 
1000 CTNS $/CTNS 

High Value High Grade (HE) 412.08 35.14 
High Value Culls (HC) 61.81  0.16 
Low Value High Grade (LE) 1556.75 18.07 
Low Value Culls (LC) 242.78  0.16 
Marketing 

  High Grade (ME) 1968.83 21.28 
Culls (MC) 304.60 0.128 
Farm 

  High Value (FH) 1799.53 3.51 
Low Value (FL) 473.89 1.81 
Note: 1 CNTS (box)=40lb; 1 Car=1,000 CNTS 

 Source: Author's calculation based on Washington Grower Clearing house  
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Table 3. Simulation Results of Price and Quantity Changes 

  
Policy Biased Tech 

Policy & 
Biased Tech 

Demand & 
Biased Tech 

  

-5% in high value 
high grade apple 
export demand 

+5% in farm 
supply for high 
value apple 

-5% in high 
value high 
grade apple 
export demand 
& +5% in farm 
supply input 
for high value 
apple 

+15% in high 
value high 
grade apple 
demand &+5% 
in farm supply 
for high value 
apple 

  
Percent change in quantity (Confidence interval) 

Marketing 
Supply High grade 0.12 1.37 2.46 -0.03 

  
(0.06, 0.18) (0.89, 2.01) (1.09, 2.98) (-1.86, -0.003) 

 
Culls -0.17 2.17 0.18 0.04 

  
(-0.22, -0.07) (1.96, 3.02) (-0.03, 0.34) (0.003, 0.12) 

Farm 
Supply High value -13.98 2.34 -12.61 3.49 

  
(-15.01, -12.08) (1.08, 2.99) (-15.28, -9.98) (1.64, 5.03) 

 
Low value 2.12 -0.01 4.29 -0.53 

  
(1.88, 2.42) (-0.018, 0.12) (2.89, 5.01) (-2.05, -0.0068) 

Retail 
Price 

High value 
high grade -5.23 -1.04 -6.27 1.98 

  
(-6.00, -4.46) (-2.22, 0.34) (-8.09, -3.02) (0.23, 3.53) 

 

High value 
culls 0.61 0.75 1.37 -0.15 

  
(0.02, 1.23) (0.33, 1.02) (0.65, 2.05) (-1.23, 0.08) 

 

Low value 
high grade -2.17 -1.82 -3.99 0.54 

  
(-2.80, -1.68) (-2.9, -0.06) (-5.02, -1.98) (0.10, 1.86) 

 

Low value 
culls 0.15 0.32 0.47 -0.04 

  
(0.02, 0.28) (0.18, 0. 43) (-0.09, 1.53) (-2.06, 1.12) 

Apple 
Supply 

High value 
high grade -16.73 1.72 -12.19 4.18 

  
(-18.01, -14.73) (0.98, 2.35) (-15.01, -8.92) (2.64, 5.83) 

 

High value 
culls -0.58 -0.37 -0.02 0.15 

  
(-0.78, -0.38) (-1.88, 1.19) (-0.28, -0.01) (0.003, 0.25) 

 

Low value 
high grade 2.61 2.63 4.67 -0.65 

  
(1.56, 3.58) (0.96, 3.56) (2.30, 5.99) (-2.39, 0.86) 

 

Low value 
culls 0.03 0.14 0.16 -0.003 

  
(0.002, 0.036) (0.02, 0.30) (-0.01, 0.92) (-1.56, 1.63) 

Note: The 95% confidence intervals are based on empirical beta distributions generated by variances 
on underlying elasticity parameters. 
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Table 4. Simulation Results Welfare Changes 

  
Policy Biased Tech 

Policy & Biased 
Tech 

Demand & 
Biased Tech 

  

+5% in high 
value high grade 
apple demand 

-5% in farm 
supply for high 
grade apple 

-5% in high 
value high grade 
apple demand & 
+5% in farm 
supply input for 
high grade apple 

+5% in high 
value high grade 
apple demand 
&+5% in farm 
supply for high 
grade apple 

  
Welfare change in million USD (Confidence interval) 

Producer 
Surplus 
Marketing  High grade 11.32 -1.71 -24.40 -2.89 

  
(9.90, 13.29) (-1.89, -1.65) (-27.06, -21.24) (-3.81, -1.09) 

 
Culls -20.00 0.12 -0.13 0.18 

  
(-22.01, -18.65) (0.01, 0.19) (-1.02, -0.06) (0.06, 0.35) 

Producer 
Surplus 
Farm  High value -7.86 1.13 14.91 24.26 

  
(-8.21, -5.96) (0.53, 1.82) (13.38, 15.56) (22.51, 26.12) 

 
Low value -0.36 0.18 -4.56 -5.82 

  
(-1.09, -0.02) (0.17, 0.31) (-5.10, -3.85) (-6.16, -3.08) 

Consumer 
Surplus 

High value 
high grade -79.91 -31.12 184.1 -474.9 

  
(-81.25, -78.01) (-33.29, -29.98) (179.2, 195.3) (-458.1, 490.6) 

 

High value 
culls 0.31 -0.73 -0.45 -1.68 

  
(0.19, 0.50) (-1.23, -0.28) (-1.02, -0.01) (-1.88, -1.02) 

 

Low value 
high grade 46.40 19.46 -8.15 117.1 

  
(45.89, 46.96) (18.53, 21.02) (-9.66, -7.32) (112.2, 121.6) 

 

Low value 
culls 0.35 -0.66 -0.32 -1.62 

  (0.28, 0.46) (-0.18, -0.03) (-1.00, -0.08) (-1.99, -0.35) 
Note: The 95% confidence intervals are based on empirical beta distributions generated by 
variances on underlying elasticity parameters. 
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