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1 Introduction

Industrial agglomerations often appear in association with major tra¢ c nodes. Obvious examples

are those in cities which are usually seen near key junctions of highway networks or large railroad

stations. At a more aggregated level, the unprecedented growth in Asian industries in the 1980s took

place around the three largest ports in the world: Hong Kong, Singapore, and Kaohsiung.

The coincidence of industrial agglomeration and transport nodes results from the process of recipro-

cal reinforcements between them. Of the two reinforcement forces, �rms�motivation to save transport

costs attracts these �rms to locate around transport nodes. Indeed, the total transport costs paid by

major manufacturing �rms in Japan amount to 8.69 per cent of their total sales value (Japan Logistic

Systems Association, 1996). In addition to these pecuniary costs, �rms bear signi�cant time costs for

transportation. In particular, they often need business contacts with their customers and material

suppliers in other regions. Even within a �rm, local managers must regularly meet to discuss business

decisions. All these things, of course, require frequent business trips across regions which incur a lot

of time and money. For another example, assembly �rms of electronic products in Asia are constantly

subject to uncertain changes in market demand and production technologies. They are thus forced

to frequently alter the amount and variety of components to be assembled. If the transportation of

components takes time, they need to order them much earlier without knowing the exact type and

amount of necessary components. To avoid this sort of risk, they prefer to operate at locations with

good transport access, such as large international ports.

The other reinforcement force is that the e¢ ciency of transport nodes is improved by the increase

in transport demand stemming from the growth of industrial agglomeration. The basic mechanism

originates from scale economies in transportation which have been realized by the development of

large-sized and high-speed carriers, such as container ships, bullet trains, and jumbo jets. The scale

economies provide an incentive for collective transportation and hence stimulate the development of

trunk routes and the hub-spoke structure of transportation. The process of the trunk route formation

exhibits the following circular causation. Suppose there are frequent transport services on a given link,

such that these are available on demand. As a result, a large number of shippers are attracted to use the

link, which in turn supports even more frequent transport services on the link. This positive feedback

mechanism eventually leads to the endogenous formation of trunk links and transport hubs. When scale

economies in transportation rule the transport advantage of each location, a major transport node

can spontaneously emerge at any place having large transport demand like the location of industrial

agglomeration. We call the above mechanism of circular causation economies of transport density.

Several studies have shown evidence that economies of density are signi�cant in air and railroad

transportation, which mainly carry passengers.1 Yet, economies of density appear to be signi�cant in

freight transportation as well. In the case of maritime transportation, the transport cost per container

decreases by 0.31 per cent given one per cent increase in ship size (Journal of Commerce, 1997). Also,

the fare for shipping a container from Japan to each of the Southeast Asian ports decreases by 0.12 per

1See Brueckner and Spiller (1991), Brueckner, Dyer and Spiller (1992), Caves, Christensen and Tretheway (1984), for
the case of air transportation, and Braeutigam, Daughety and Turnquist (1982, 1984) for the case of rail transportation.
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cent given one per cent increase in the number of ships on a given transport route, where the number

of ships tends to increase with the transport density. Thus, the concentration of tra¢ c demand and

transport services exhibits a positive correlation with the e¢ ciency of transportation. The e¤ect can

be clearly seen if we compare a pair of transport routes �say, Singapore-Japan and Jakarta-Japan �

which are similar distance-wise but di¤erent with respect to transport density. Whereas Jakarta and

Singapore may be equidistant vis-a-vis Japan, travel time from Jakarta is twice (100 per cent) longer

than that from Singapore which has a large hub port linked to international trunk routes. (Shipping

Gazette, 1997). A similar relation can be found between Hong Kong (hub) and Manila (non-hub).

On average, transport costs from Japan to a non-hub port in Southeast Asia is 22.6 per cent higher

than to a hub port in the same region.2

There are two groups in the existing literature on the causal relationship between industrial location

patterns and the transport network structure. The works in one group depict the design of a transport

network as a problem for a planner in a transport sector when economies of density exist (e.g.,

Campbell, 1996; Hendricks, Piccione and Tan, 1995). However, origin-destination �ows between each

pair of locations are assumed to be given in their models. As a result, they do not explain how the

structure of the transport network a¤ects the industrial location pattern. On the other hand, the

works in the other group focus on deriving industrial location patterns under a given structure of

the transport network (e.g., Fujita and Mori, 1996; Konishi, 2000; Krugman, 1993a; Mills, 1972).

However, they do not explain how the spatial distribution of industries a¤ects the structure of the

transport network. Unlike the previous studies, this paper o¤ers a simple general equilibrium model

which analyzes the interdependence between industrial location behavior and the transport network

structure when economies of transport density exist.

Now, let us describe the model informally. We consider transport and specialization patterns of two

regions, East and West, which produce two types of homogeneous consumption goods, agricultural and

manufactured. In both regions, the agricultural good can be produced by using only domestic factors,

typically labor, while the manufactured good requires import of intermediate inputs from a third

region (say, North) in addition to the domestic factors.3 Assume that the production technologies

in the three industries are all linear and that East and West are completely identical in terms of

geographical advantage and factor endowment. In this context, if the transport technology is also

linear (in distance and volume), there is no reason for industrial agglomeration to take place in either

East or West.

Here, however, let us suppose that the transportation of intermediate goods is subject to economies

of density. Then, if a large number of manufacturing �rms locate in one region and yield su¢ cient

demand for interregional transport, it will be followed by a decrease in the transport rate for interme-

diate goods, due to density economies. This in turn attracts more manufacturing �rms to the region.

2Transport rates are based on data given in Usui (1997). The regression results are available upon request.
3 In the international context, North corresponds to advanced regions such as the EU, Japan and the US, producing

high-tech components, while East and West correspond to developing countries in Southeast Asia and South America
which assemble these components and export them back to North. In the context of a domestic economy, North may
represent the core region such as Tokyo in Japan or New England/Calfornia in the US, while East and West comprise
the periphery which often have strong production linkages to the core region.
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As a result, the interaction between increasing returns in transportation and industrial location may

trigger the industrial agglomeration and determine the structure of the transport network. In fact, it

is possible in our model that a region specializing in manufacturing (say, East) spontaneously evolves

into a transport hub through which West imports intermediate goods from North.4

The plan of the paper is as follows. In Section 2, the setup of the model is introduced. In

Section 3, under given transport demand conditions in each region, the possible transport patterns of

the products and the associated regional di¤erence in transport advantage are discussed. In Section

4, the specialization pattern, and hence, the transport demand in each region is endogenized, and

the equilibrium trade and transport patterns are derived. In Section 5, adjustment dynamics of the

economy is introduced, and the stability of equilibria is examined. In Section 6, welfare implications

of our model is discussed. Finally, we conclude in Section 7.

2 The model

In this section, we describe the basic setup of the model. In Subsection 2.1, the geography, produc-

tion technology, and consumer preferences are speci�ed. Then in Subsection 2.2, the transport cost

structure, in particular, the working of density economies in transportation, is explained in detail.

2.1 Geography, technology, and preference

In order to model the endogenous transport advantage of a location and its consequence on the

industrial location pattern, we need at least three locations in the economy. For this, our economy

consists of three regions, called North, East and West. Since it is an unnecessary complication to fully

endogenize transport advantages and specialization patterns of all three regions, we consider a simple

setup in which those of only two regions, East and West, are simultaneously determined within the

model.

To highlight the role of density economies in transportation as a source of regional advantage, we

assume symmetry between East and West in both factor endowment and geographical proximity to

North. The geography is such that each of East and West is located at one unit of distance away from

North, while the distance between East and West is k > 0 (refer to Figure 1a). Labor is assumed to

be the only primary factor of production in this economy. Each region is endowed with one unit of (a

continuum of) immobile workers, where each unit embodies a unit of homogeneous labor.

Figure 1

There are two types of consumption goods, manufactured and agricultural. All consumers (=work-

ers) have the same preferences, and their utility function is assumed to take the Cobb-Douglas form:

U = C�MC
1��
A ; (1)

4Considering density economies in the transportation of other goods will not change our basic result. Moreover,
today, density economies in transportation is most pronounced in the manufacture of �nal goods which uses a wide
variety of �ne components obtained from intermediate good suppliers at various locations.
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where CM [resp., CA] is consumption of the manufactured [resp., agricultural] good, and � represents

the expenditure share of the manufactured good (0 < � < 1).

The manufactured good is produced by using labor and intermediate goods subject to a constant-

returns technology given by

M = L�I1��; (2)

where M is the output, L [resp., I] is the amount of labor [resp., intermediate inputs], and � is a

constant (0 < � < 1). The asymmetry between North and the other two regions is assumed in that

each unit of intermediate good [resp., agricultural good] is produced out of one unit of labor and the

production is possible only in North [resp., East and West]. Moreover, the manufactured good can be

assembled only in East and West by using their domestic labor. Thus, North exclusively supplies the

intermediate good, while East and West produce the manufactured and/or agricultural good (refer to

Figure 1b). Finally, all markets are perfectly competitive.

2.2 Transport cost

The transport costs are assumed to be product-speci�c and subject to Samuelson�s iceberg technology

(Samuelson, 1952). That is, if the good is transported over a distance, only a fraction of it reaches the

destination.5 For further simpli�cation, there are potential density economies only in the transport of

intermediate goods. In this context, the relative transport advantage of East and West is represented

by their transport access to North (for the procurement of production inputs), which is endogenous

in the model. Any interregional transportation is assumed to take place along the triangle, North-

East-West (refer to Figure 1a).

For the transport of intermediate goods on a given link, the transport cost decreases as the trans-

port density on the link increases. Since we do not explicitly consider the timing of shipments here, we

interchangeably refer to �transport density�and �(aggregate) transport volume�on a given link. The

following functional form is assumed for the transport rate of intermediate good, that is, the transport

cost (in terms of intermediate goods) for shipping one unit:

T (d;Q) =

�
d if Q < �
d�=Q if Q � � ; (3)

where d and Q are respectively the distance and transport density of intermediate goods on a given

transport link (Q is the aggregate quantity on the link which reaches the destination), and � is a

positive constant indicating the degree of density economies (refer to Figure 2 for an illustration).

In other words, the transport cost for a unit of intermediate good per distance is one for Q � � and
�=Q for Q > �. Thus, up to the threshold level �, density economies are not e¤ective, but beyond

�, the transport rate decreases as the transport density increases. Economies of density are said to

be larger if the transport cost per unit of the product is smaller for a given transport density. In our

formulation, the smaller the value of �, the larger the density economies. Furthermore, it is assumed

5The product-speci�city and iceberg technology may not be general properties of transport costs. In particular, an
explicit treatment of the transport sector would be an interesting alternative. But, these assumptions dramatically
increase the tractability of the spatial general equilibrium models with agglomeration economies.
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that density economies are external to each �rm, and that transport costs are linear in distance.6

Figure 2

The transport rate for the manufactured good is given by md, where m is a positive constant and

d is the distance. For simplicity, transport of the agricultural good is assumed to be costless.

In this setting, the transport link which happens to attract a larger tra¢ c of intermediate goods can

have better transport access, and hence, other things being equal, manufacturing �rms are attracted

to the region which is a node of the link. This concentration of manufacturing �rms in turn enlarges

the transport demand there, generating far greater density economies. Hence, even in the absence of

agglomerative forces stemming from production technologies or consumer preferences, scale economies

in transportation can generate the geographic concentration of industries. The extent to which tra¢ c

agglomeration develops depends on the size and spatial distribution of demand for manufactured goods

(due to immobile workers in each region), and the size of intermediate good supply (from North). The

former has a crucial in�uence on the structure of the transport network. Namely, if East and West

are geographically close, then the tra¢ c for both regions may be pooled along the way from North

(i.e., a hub may form) to bene�t from density economies. However, a hub formation may not make

sense if East and West are far apart, since in this case shippers in at least one of the two regions

need to transport over a longer distance than in the case of direct transport from North, and this

long-hauling may be very costly. The latter limits the size of transport demand, and hence, limits the

scale of density economies attainable.

3 Formation of transport network

In the economy we study, the structure of the transport network and industrial location are determined

interdependently. The transport accessibility clearly a¤ects the location of �rms, since they want

to save shipping costs. On the other hand, the industrial location pattern determines the spatial

distribution of transport demand, which in turn in�uences the shape of the transport network in the

presence of density economies. In this section, we focus on the latter e¤ect, and ask �What is the

viable structure of the transport network under given transport demand in each region in the presence

of economies of tra¢ c density?� Then in the next section, we will discuss the interaction of the two

e¤ects, taking the former one into account.

Recall that in the context of our model, the structure of the transport network is relevant only

for the transportation of intermediate goods for which density economies are e¤ective. That is, the

relevant shippers are manufacturing �rms in East and West who import intermediate goods from

North. Since the market for intermediate goods is perfectly competitive, the delivered price of an

intermediate good is given by 1 + T (d;Q) in terms of the transported intermediate good over a link

of length d and tra¢ c density Q. Assuming that the transport rate on each link is fully known1 to all

�rms, we can �nd viable routes which o¤er the lowest delivered prices.

6To focus on the in�uence of density economies, another important scale economies in transportation, economies of
transport distance or long-haul economies, are excluded. See Louveaux, Thisse and Beguin (1981) on this issue.
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Now de�ne the transport network equilibrium as a state of the transport network such that given

transport density on each transport link, each shipper achieves the lowest transport cost, and has no

incentive to change transport routes unilaterally. Obviously, the transport network equilibrium is a

necessary condition for an equilibrium of the economy.

What are the possible structures of transport network? Since the transport rate on each route is

perfectly known, the possibility of cross-hauling is excluded in equilibrium. This means that in our

economy, there is at most one hub in equilibrium, where by a hub we mean a region (either East

or West) through which strictly positive amounts of intermediate goods are transported to both of

East and West. Below, the equilibrium conditions for the two key patterns of transportation are

derived. Namely, we consider the cases in which all shipments of intermediate goods to one region

take the same transport route. The possible route is then either the direct or indirect route: North-

East or North-West-East for East-bound shipments, and likewise, North-West or North-East-West for

West-bound ones.7 Denote by IE [resp., IW ] the demand of intermediate goods in East [resp., West].

In the presence of density economies, the link which happens to attract a larger tra¢ c will bene�t

from agglomeration economies of transportation. It follows that transport routes which are identical

distance-wise may end up being unequal in transport costs once the polarization of tra¢ c takes place.

This symmetry-breaking mechanism is explained in Subsections 3.1 and 3.2 for the cases with and

without a hub formation, respectively.

3.1 Case without a hub formation

Consider �rst the case in which only the direct routes are used (i.e., there is no hubbing). The

transport rate on each link in this case is shown in Figure 3a. In this case, the tra¢ c density on the

North-East [resp., North-West] link is IE [resp., IW ], while that on the East-West link is zero. It

follows that the transport rate on the North-East [resp., North-West] link is given by T (1; IE) [resp.,

T (1; IW )], while it is T (k; 0) = k on the East-West link.

Figure 3

Under what condition is this transport pattern viable? To answer this question, let us see if there

is a shipper who wants to use an alternative transport route. In our simple framework, there is

only one alternative route for each shipper. Namely, for a manufacturing �rm in East [resp., West],

intermediate goods may be transported via West [resp., East] indirectly. Note that this round-about

transportation may make sense in the presence of density economies if the cost reduction attained by

pooling the tra¢ c is su¢ ciently large. The cost of the round-about transportation under the given

transport pattern can be calculated as follows. Recall that density economies are external to each �rm,

so that the current transport rate on each link is taken as given. Recall also that the transport costs

in our model is of the iceberg-type. In this context, for one unit of intermediate good to reach West

from East, 1+ k units must be shipped from East, where k units melts away while being transported.

7 It is possible to have a mixed transport pattern: shippers in the same region are indi¤erent between direct and
indirect routes. But, as will be discussed in Section 4.3, such an equilibrium is unstable under an appropriate adjustment
process (refer also to footnote 13). Thus, we omit the discussion of this transport pattern.
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Similarly, for one unit of intermediate good to reach East from North, 1 + T (1; IE) units must be

shipped from North. That is, to have one unit in West via the North-East-West route under the

present tra¢ c volume on each link, (1 + k)f1 + T (1; IE)g units must be shipped from North, and

hence, the transport rate is given by (1 + k)f1 + T (1; IE)g � 1. If this amount is not lower than the
ongoing transport rate, T (1; IW ), then no shipper in West has an incentive to use the indirect route.

In a symmetric manner, we can obtain the condition for all shippers in East to choose the (present)

direct route. Accordingly, the no-arbitrage condition for the intermediate good for this case can be

written as

(1 + k)f1 + T (1; Ii)g � 1 + T (1; Ij); i 6= j 2 fE;Wg: (4)

It is easy to see that we can have di¤erent transport rates on the two links, North-East and North-

West, in equilibrium, which is due to the presence of density economies and the distance between East

and West (represented by k). To understand this, suppose the transport demand in East is larger

than that in West, and is large enough for density economies to be e¤ective: IE > IW and IE > �.

Then, we have T (1; IE) < T (1; IW ). If East and West are close enough (geographically), the supposed

direct transport pattern will not be sustained, since (4) is violated for a su¢ ciently small k. That is,

if the two regions are su¢ ciently close, then for a shipper in West, the bene�t of pooling the tra¢ c

overcomes the cost of the round-about transportation via East. However, if the two regions are far

from each other, hubbing does not make sense. On the other hand, there should be no incentive for

a shipper in East to use a transport route other than the direct North-East one, since it obviously

o¤ers the smallest transport rate among all the possible routes.

3.2 Case with a hub formation

Suppose all intermediate goods are transported via either East or West. Without loss of generality,

let East be the transport hub. The transport rate on each link is shown in Figure 3b, and is derived as

follows. First, since the tra¢ c on the East-West link is IW , the transport rate on this link is T (k; IW ).

It follows that IW f1 + T (k; IW )g units of intermediate good must be shipped from East to West,

which together with the intermediate good demand in East, IE , make up the tra¢ c density on the

North-East link: IE + IW f1 + T (k; IW )g. Then, the transport rate on the North-East link is given
by T (1; IE + IW [1+T (k; IW )]). Consequently, for one unit of intermediate good to arrive in West via

East, f1 + T (k; IW )gf1 + T (1; IE + IW [1 + T (k; IW )])g units must be shipped from North, and the

transport rate on the North-East-West route is this amount minus one.

Now, can this transport pattern be an equilibrium? Let us consider a deviation of a shipper from

the present transport pattern. Note that in the above case East is a transport hub so that shippers

in East have no incentive to change routes. This can be veri�ed by the fact that the transport rate,

T (1; IE + IW [1+T (k; IW )]), on the North-East link is at most T (1; 0) = 1 which equals the transport

rate on the North-West link. It follows that we only need to see if shippers in West (i.e., the non-hub

region) have an incentive to deviate to the direct North-West route. Since there is no tra¢ c there, the

transport rate is one. It follows that if the round-about transportation via East costs more than one

per unit of intermediate good, then �rms will instead use the direct route. The no-arbitrage condition
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can then be written as follows:

f1 + T (k; IW )gf1 + T (1; IE + IW [1 + T (k; IW )])g � 2: (5)

When is this condition satis�ed? Not surprisingly, an increase in the distance between East and West,

k, will increase the cost for the round-about transportation for shippers in the non-hub region as we

can see from (3) that the LHS of (5) increases as k increases. On the other hand, as long as density

economies are at work on the North-East link so that T (1; IE + IW [1 + T (k; IW )]) < 1, then the

formation of a hub may be an equilibrium for a su¢ ciently small k. As in the case of the direct

transport pattern considered above, the (hub) region which happens to be a node of a frequently

used transport link will bene�t the most from density economies on the trunk link, and faces a lower

delivered price for intermediate good.

When a hub is formed, the bene�t from density economies on the trunk link is shared by both

East and West, whereas it is localized in the region which is attached to the trunk link if a hub is

not formed. It should be noted, however, that the hub formation is not necessarily bene�cial to the

non-hub region. Since density economies are external to each �rm, once a hub is formed, the transport

pattern tends to be locked in, and each shipper in the non-hub region may not unilaterally have an

incentive to use the direct transport route, even if the direct route may be cheaper if all shippers in

the non-hub region collectively choose the direct transport route.

We will see in the following sections that when the demand for intermediate goods in each region is

endogenized, density economies in transportation generates agglomeration economies in manufacturing

production, and play the central role in driving the specialization patterns and welfare of the regions.

4 Endogenous transport advantage and patterns of trade

In the previous section, we have studied how the di¤erence in transport advantage between the regions

can arise for a given size of transport demand in each region. However, the transport demand should

also be determined in the model so as to meet the technological and market conditions. Now, we

endogenize the specialization patterns of East and West, and �nd simultaneously the possible equilib-

rium patterns of production and transportation in the economy. This section is organized as follows.

In subsection 4.1, we de�ne the (full) equilibrium of the economy, and discuss possible equilibrium

con�gurations in our model. Though our model potentially generates many di¤erent con�gurations

regarding transport and trade patterns, in this subsection we carefully exclude relatively unimportant

ones to focus on explaining the basic mechanism of the interdependence between transport density

economies and industrial agglomeration. Then in subsections 4.2 and 4.3, we characterize these se-

lected equilibrium con�gurations.

4.1 Preliminary analysis

First, let us de�ne an equilibrium as a state of the economy in which: (i) consumers maximize utility;

(ii) �rms maximize pro�ts; (iii) pro�ts are zero; (iv) all workers attain the same utility level in their

region; (v) all markets clear; (vi) the transport network equilibrium is attained.
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The analysis of the transport network equilibrium suggested that in the presence of positive ex-

ternalities in transportation, multiple equilibria may arise under the same set of parameter values,

and where each equilibrium corresponds to a di¤erent transport and specialization pattern. In our

model, the di¤erence in specialization patterns between East and West accrues primarily to the dif-

ference in the endogenous transport advantage in each region. Since the transport advantage provides

a production advantage in manufacturing, the region which happens to have the transport advan-

tage necessarily exports the manufactured good, while the other region may not. In that sense, it

is convenient to classify the possible equilibrium con�gurations with respect to the trade pattern of

the regions. Namely, an equilibrium is called a convergent equilibrium if both East and West export

manufactured goods, while it is called a divergent equilibrium if only one of them does. When dealing

with a divergent equilibrium, for convenience, we call the region that exports manufactured goods the

manufacturing region, and the other the agricultural region, based on the region�s relative specializa-

tion. Below, we �rst derive common conditions for both types of equilibria. Since both convergent

and divergent equilibria can have multiple con�gurations, we exclude relatively unimportant ones for

simplicity of presentation. Then, the conditions that are speci�c to each con�guration which we have

selected to study are derived in Subsections 4.2 and 4.3. When convenient, we refer to North, East

and West by regions N , E and W , respectively, and the equilibrium value of an endogenous variable

x is denoted by x�.

Suppose region i 2 fE;Wg produces manufactured goods. Let pIi ; wi and ni be the delivered
price of the intermediate good, the wage rate, and the share of manufacturing workers, respectively,

in region i. Then, cost minimization under the production technology given by (2) together with the

market clearing of labor and the intermediate good imply that

ni =
�

1� �
pIi
wi
Ii; i 2 fE;Wg: (6)

Given wi and pIi , the unit cost of manufactured good, c, in region i can be calculated by using (2)

and (6) as

c(wi; p
I
i ) = �

��(1� �)�(1��)w�i (pIi )1��; i 2 fE;Wg: (7)

Since North produces only intermediate goods, its entire income consists of the sales of this good.

Denote by wN the wage rate (= the total income) in North. The marginal cost pricing implies that

the price of the intermediate good in North equals wN . For a given demand for intermediate goods

in region i, Ii, the total sales of intermediate goods in region i is given by pIi Ii which includes the

transport consumption of the good. It follows that the total income of North, wN ; can be expressed

as

wN = p
I
EIE + p

I
W IW : (8)

Now, what are possible trade �ows of manufactured and agricultural goods? Obviously, East or

West (or both) should export manufactured goods to North in equilibrium. Since in our model the

only source of production advantage in manufacturing is the transport advantage in the procurement

of intermediate inputs (due to density economies), the exporter of manufactured goods necessarily
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has the transport advantage. Note that in a divergent equilibrium, the manufacturing region may

export manufactured goods also to the agricultural region if the transport cost for the good is very low

(relatively to that of intermediate inputs). Thus, we have two possible cases: �rst, either East or West

exports manufactured goods to North, while the other region is self-su¢ cient, and second, either East

or West exports manufactured goods to all other regions. However, to explain the basic mechanism

which links endogenous transport advantage and concentration of manufacturing production, it is

su¢ cient to consider (an easier) one of these two cases. Here, we limit our analysis to the former one.

The desired situation is guaranteed if the transport rate is higher for the manufactured good than

for intermediate inputs, which is often described as weight/bulk-gaining manufacturing production.

Under the speci�cation of the transport cost for intermediate goods given by (3), it means that

transporting a unit of the manufactured good over a unit of distance costs at least one additional unit

of the good which is consumed on the way. So, we simply set the transport rate for the manufactured

good equal to one, i.e., m = 1.8

To see why there is no trade of manufactured goods between East and West in the present context,

suppose East exports manufactured goods to West in equilibrium. Recall that the agricultural good

is free of transport costs, and it can be produced in both East and West under the same constant-

returns technology using labor. Then, we must have w�W � w�E , where the equality holds if East

produces the agricultural good as well. It also follows that we must have pI�E < pI�W , otherwise, West

can produce the manufactured good cheaper than the imports. Since West imports the manufactured

good from East, the local price of the manufactured good in West must be equal to the delivered

price in West of the manufactured good produced in East, pM�
E (1 + k), where k units of the good is

consumed en route. Does it make sense for West to import the manufactured good from East? The

answer is �No.� Why? Because West can produce manufactured goods cheaper than pM�
E (1 + k),

by importing intermediate goods from East. Namely, since pI�W � pI�E (1 + k) and w�W � w�E , we can
show that c(w�W ; p

I�
W ) � (1 + k)1��c(w�E ; pI�E ) < pM�

E (1 + k). Hence, if a good is traded at all between

East and West, it must be the agricultural good. Though the weight-gaining nature of manufacturing

production is not always true in reality, we will see below that it greatly reduces the complexity of

the problem without losing the essence of the model.

So far, we have set up the model so that both East and West produce the manufactured good

at least for their domestic market. What about agricultural production? Do they both produce the

agricultural good? Or, does one of them completely specialize in manufacturing? Not surprisingly,

if the demand for the manufactured good in North is not too large, it can be completely satis�ed by

either East or West. Thus, in this case, there is room for agricultural production in a region even if

it is an exporter of the manufactured good. However, if the demand in North is too large, then the

supply from only one region may not be enough. In this case, the exporter of manufactured goods

will completely specialize in manufacturing, while the other will relatively specialize in agriculture and

may export the manufactured good as well. The case of complete specialization may be of interest

8As long as the manufacturing is weight-gaining, our basic results hold. In particular, the speci�c size of the melting-
down factor in transport is not qualitatively important as it depends on the speci�cation of the transport cost for
intermediate goods given by (3).
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in some other situations. But, for our objective, it does not inspire theoretical interest.9 Throughout

the paper, therefore we restrict the analysis in the context of incomplete specialization in both East

and West. One way to guarantee this situation is to assume that consumer preferences are not too

inclined towards the manufactured good, that is, � is not too large (refer to (1)). The calculation

below will con�rm that the upper bound of the expenditure share of the manufactured good, �, is

given by

e� � �1 +
p
1 + 4�(1� �)

2�(1� �) : (9)

Hence, we maintain the following assumption:10

Assumption 1 � < e�:
If region i 2 fE;Wg specializes incompletely, then the equilibrium wage rate in region i, w�i ,equals

the price of the agricultural good. Let the agricultural good be the numeraire. Then, we have

w�E = w
�
W = 1: (10)

Note that share � [resp., 1��] of manufacturing production cost is spent on labor [resp., intermediate
good], and that the total sales of intermediate goods should equal to wN by (8). It follows that the

total wage payment in the manufacturing sector in East and West should amount to w�N�=(1 � �)
in equilibrium, which by (10) is equal to the total labor employment in manufacturing in the two

regions. Since each of East and West has in total one unit of labor, the total supply of the agricultural

good in the economy is given by 2� w�N�=(1� �). By equilibrating this to the total demand for the
agricultural good in the economy, (1� �)(w�N + 2), we obtain

w�N =
2(1� �)�
1� (1� �)�: (11)

Next, by a similar argument, the total sales of the manufacturing sector in region i in equilibrium

must be equal to w�i n
�
i =�, while the total expenditure for the consumption of manufactured good in

the economy is given by �(w�N +w
�
E +w

�
W ). By equating these two, and using (10) and (11), we can

solve for the total worker employment in manufacturing in equilibrium:

n�E + n
�
W =

2��

1� (1� �)�: (12)

The equilibrium manufacturing share in region i, n�i ; takes its maximum value, n, when the region�s

exports completely ful�ll the demand in North. In this case, the sales of the manufacturing sector in

region i, w�i n
�
i =�, should match the sum of the expenditure for the manufactured goods in region i and

that in North, �(w�i +w
�
N ). On the other hand, n

�
i takes its minimum value, n, when the manufacturing

sector in region i exports nothing. In this case, the equilibrium sales of the manufacturing sector in

region i should be equal to the total expenditure for the manufactured good in the region, �w�i . Using

(10) and (11), we can obtain the values of n and n as follows:

n = ��
1 + (1� �)�
1� (1� �)�; (13)

9The consideration of complete specialization (by East and/or West) complicates the analysis without changing the
basic results, just like it is not necessary to derive the basic insight of neoclasical trade models.
10 e� takes the minimum value 2(

p
2� 1) at � = 1=2.
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n = ��: (14)

It can be veri�ed that under Assumption 1, we have 0 < n < n < 1. Thus, any equilibrium manufac-

turing share in region i will satisfy the condition that

n � n�i � n; i 2 fE;Wg: (15)

Note that if both East and West specialize incompletely, the wage rate of workers is the same for

both regions (refer to (10)), and thus only the region with transport advantage (i.e., a lower delivered

price for intermediate inputs) will export manufactured goods in equilibrium. This necessarily means

that (under Assumption 1) there is a di¤erence in transport advantage in a divergent equilibrium,

while there are none in a convergent equilibrium. The following subsections derive the conditions for

the two equilibrium con�gurations.

4.2 Convergent equilibrium

Suppose both East and West export manufactured goods in equilibrium. Then it can be veri�ed

that all intermediate inputs used in each region are procured directly from North. It follows that the

delivered prices of intermediate goods in these regions are given by

pIi = wNf1 + T (1; Ii)g; i 2 fE;Wg: (16)

Since the delivered price in North of manufactured goods should be the same no matter where they

are produced, the f.o.b. prices (which equal the production costs) in East and West are also necessarily

the same: c(w�E ; p
I�
E ) = c(w

�
W ; p

I�
W ).

11 Since w�E = w
�
W = 1 by (10), we must have pI�E = pI�W , which in

turn implies T (1; I�E) = T (1; I
�
W ). There are two possible cases that satisfy this requirement. One is

that density economies are e¤ective in an identical manner on both the North-East and North-West

links: I�E = I
�
W > �. The other is that they are not e¤ective on either link: I�E ; I

�
W � �, and hence,

T (1; I�E) = T (1; I�W ) = 1. Thus, the degree of density economies, �, plays a key role. Below, the

convergent equilibrium specialization patterns of the regions are derived for each value of �. The

result is also visualized in Figure 4 which plots the equilibrium share of East in the manufacturing

labor employment in the economy, n�E=(n
�
E + n

�
W ), for each value of �.

12

Figure 4

By (6), (10), (11) and (16), we can calculate the threshold size of the manufacturing sector in each

region to generate a su¢ ciently large demand for intermediate goods to trigger density economies:

I�i 7 � if and only if n�i 7
4���

1� (1� �)�: (17)

11Recall that the transportation of manufactured goods are not subject to density economies.
12The plot in Figure 4 is a simulated outcome under the parameter values given in the �gure. However, the qualitative

nature of the �gure does not depend on these speci�c values of the parameters.
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Using (12) and (17), it is straightforward to show that the �rst case (I�E = I�W > �) arises when

density economies are su¢ ciently large:

n�E = n
�
W =

��

1� (1� �)�; if � < 1=4: (18)

On the other hand, the second case arises (I�E ; I
�
W � �), if density economies are small (� � 1=4) so

that they are not e¤ective on both transport links when n�E = n
�
W . In this case, there is a continuum

of convergent equilibria in which the specializations of the two regions are not necessarily identical. As

long as the manufacturing production (and hence, the tra¢ c demand) is not concentrated too much

in one region, it does not trigger density economies, and the transport rate for intermediate goods is

given by T (1; I�E) = T (1; I
�
W ) = 1. If density economies are very small (� >

1+(1��)�
4 ), it can be shown

by using (6) that they will not be e¤ective for any feasible manufacturing shares, n�E and n
�
W (i.e.,

those satisfying (12) and (15)). If density economies are of intermediate extent (14 < � �
1+(1��)�

4 ),

the values of n�E and n�W must be su¢ ciently close so that neither transport link gets tra¢ c large

enough to trigger density economies. By using (6) and (12), the range of asymmetry between the

regions�specialization patterns, n�E and n�W , which is consistent with the convergent equilibrium is

obtained as 2��(1�2�)
1�(1��)� � n�i �

4���
1�(1��)� . Since n �

2��(1�2�)
1�(1��)� and 4���

1�(1��)� � n, this range of n
�
i is

contained in [n; n]. In sum, for � � 1=4, at any convergent equilibrium, manufacturing shares, n�E and
n�W , must satisfy the following condition along with the market clearing of the manufactured good,

(12) [refer to Figure 4a]:

2��(1�2�)
1�(1��)� < n

�
i <

4���
1�(1��)� ; if 1

4 < � �
1+(1��)�

4

n < n�i < n; if � > 1+(1��)�
4

; (19)

The corresponding demand for intermediate goods (inclusive of transport consumption) in each region

can be obtained from (3), (6) and (16) as the following constant:

I�i f1 + T (1; I�i )g =
1� (1� �)�

2��
(20)

where T (1; I�i ) = �=I�i [resp., = 1] if � < 1=4 [resp., � � 1=4]. Thus, the total shipment of the

intermediate good from North to either East or West is the same, but the delivered quantity (net of

transport consumption) is larger in the region with a transport advantage.

Finally, in order for the assumed (direct) transport pattern to be a transport network equilibrium,

the no-arbitrage condition (4) for intermediate goods must be satis�ed. Namely, in equilibrium, no

manufacturing �rm in either region should have an incentive to transport intermediate goods via

the other region. If both regions export manufactured goods in equilibrium, we can immediately see

that this condition is always satis�ed. By summarizing the results obtained, we have the following

proposition:

Proposition 1 There always exists an equilibrium in which both East and West export manufactured

goods. Moreover, if � � 1=4, such an equilibrium exists uniquely, and the specialization patterns of the
two regions are identical. If � > 1=4, each specialization pattern satisfying (12) and (19) corresponds

to a unique convergent equilibrium.
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Note that in the absence of density economies, specialization patterns of the regions are arbitrary

as long as (12) and (15) are satis�ed as we can see in the case of � � 1=4. But, in the presence

of density economies, possible con�gurations are limited to the completely symmetric specialization

patterns of East and West and the most asymmetric specialization patterns which we study in the next

subsection. This shows us the signi�cance of positive externalities in transportation in determining

the patterns of trade.

4.3 Divergent equilibrium

In a divergent equilibrium, only either East or West exports the manufactured good (to North).

Without loss of generality, East is assumed to be the exporter of the manufactured good. Recall that

the manufacturing share of a region takes its maximum value, n, when the region is the only exporter

of the good. Thus, by (12) we have

n�E = n and n�W = n. (21)

As for transport patterns, there are two key cases. One is that both East and West procure intermedi-

ate goods directly from North. The other is that East becomes a transport hub, and all intermediate

goods are distributed via East. In this case, East procures intermediate goods directly from North,

while West uses the indirect North-East-West route. For convenience, we call an equilibrium associ-

ated with the former transport pattern, the divergent equilibrium without a hub, and that associated

with the latter the divergent equilibrium with a hub. There is one more possible equilibrium con�g-

uration associated with a mixed transport pattern in which intermediate goods are transported to

West both directly via the North-West link and indirectly via the North-East-West route. In this

equilibrium, the transport rate on the direct route and that on the indirect route must be exactly the

same. But, in the presence of density economies in transportation, such an equilibrium is not stable

under appropriate adjustment dynamics.13 Thus, in the rest of this subsection, we omit the discussion

of this con�guration, and focus on the two key equilibrium con�gurations: divergent equilibria with

and without a hub.

4.3.1 Case without a hub

We �rst consider the divergent equilibrium without a hub in which both East and West procures

intermediate goods directly from North. In this case, the delivered price of intermediate good in

each region is given by (16). By using this, together with (6), (8), (10) and (11), the demand for

intermediate goods (inclusive of transport consumption) in each region can be expressed in terms of

the region�s manufacturing share, n�i , which after applying (21) and then (12)-(14), can be completely

13The intuition behind the instability of the mixed-transport pattern is straightforward. Namely, a small perturbation
to the transport pattern will increase the tra¢ c on one of the routes, while reducing that on the other. As a result, due
to the density economies, the transport access of the more frequently-used route will improve the transport access. It
follows that more manufacturing �rms will choose this route, which will in turn widen the di¤erence in accessibilities
of the two routes. The complete analysis of the divergent equilibrium with a mixed transport pattern can be obtained
from the authors upon request.
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solved as

I�Ef1 + T (1; I�E)g =
1 + (1� �)�

2
; (22)

I�W f1 + T (1; I�W )g =
1� (1� �)�

2
; (23)

where the transport rate on each of the North-East and North-West links is given as follows:

T (1; I�E) =

(
�=I�E if � < 1+(1��)�

4

1 if � � 1+(1��)�
4

; (24)

T (1; I�W ) =

(
�=I�W if � < 1�(1��)�

4

1 if � � 1�(1��)�
4

: (25)

Do these con�gurations satisfy the transport network equilibrium as well? The answer depends

on the degree of transport density economies, �, and the distance between East and West, k. We also

need to check the no-arbitrage condition (4). By (24) and (25), we can see that the condition should

be examined in three di¤erent ranges of �, where density economies are (i) large: � < 1�(1��)�
4 ; (ii)

small : � � 1+(1��)�
4 ; and (iii) intermediate : 1�(1��)�

4 � � < 1+(1��)�
4 . Each case is investigated as

follows.

(i) large density economies: � < 1�(1��)�
4

In this case, the no-arbitrage condition (4) requires � < �1(k), where �1(k) is given by

�1(k) �
k

2

1� (1� �)2�2
(1 + k)f1 + (1� �)�g � 1 + (1� �)�: (26)

It can be veri�ed that

�1(k) 7
1� (1� �)�

4
if k 7 2(1� �)�

1 + (1� �)� . (27)

Thus, when the two regions are far from each other (k � 2(1��)�
1+(1��)� ), the transport network equilibrium

is always attained, while when they are close (k < 2(1��)�
1+(1��)� ), density economies should be su¢ ciently

large (� � �1) for this con�guration to be an equilibrium. The interpretation is straightforward.

Consider an extreme situation in which � ' 0 so that T (1; I�i ) ' 0 (i 2 fE;Wg). In this case, the cost
of shipping a unit of intermediate good directly from North to East and to West is approximately zero,

while the cost of shipping it indirectly via one of the regions to the other is approximately k, since

currently there is no tra¢ c between East and West. Once such a transport pattern is established, it is

locked in, and no shipper has an incentive to use the round-about route unilaterally, even if it is less

costly for all shippers in one region to collectively decide to use the round-about route. Recall (the

result in Section 3) that the deviation to the round-about route is more likely when the two regions are

geographically close (k is small). This e¤ect can be seen in (26) that �1(k) is an increasing function

of k. That is, the closer the two regions, the greater the degree of density economies required for the

direct transport pattern to be established in equilibrium. As (27) shows, the considered transport

network is not an equilibrium for �1(k) < � if k <
2(1��)�
1+(1��)� .

(ii) Small density economies: � � 1+(1��)�
4
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In this case, density economies are not e¤ective on either link: T (1; I�E) = T (1; I�W ) = 1, which

means that the round-about transportation is never cheaper than the present direct one. In this

range of �, the divergence in the specialization patterns of the two regions is not induced by the

di¤erence in the production advantage. In fact, any specialization pattern is an equilibrium as long

as the aggregate demand and supply of intermediate goods meet (i.e., (12) and (15) are satis�ed), as

the case for � > 1=4 in Proposition 1 indicates. Thus, the distinction between the convergent and

divergent con�gurations is not meaningful in this range of �.

(iii) Intermediate density economies: 1�(1��)�
4 � � < 1+(1��)�

4

In this case, the no-arbitrage condition (4) requires � � �2(k), where �2(k) is given by

�2(k) �
1� k
4

f1 + (1� �)�g: (28)

It can be veri�ed that

�2(k) ?
1� (1� �)�

4
if k 7 2(1� �)�

1 + (1� �)�; (29)

which means that the assumed transport network is an equilibrium for the entire range, 1�(1��)�4 �
� < 1+(1��)�

4 ; when the two regions are far from each other (k � 2(1��)�
1+(1��)� ). Since the round-about

transportation makes sense only if the two regions are su¢ ciently close, this result is not surprising.

On the other hand, when the two regions are relatively close (k < 2(1��)�
1+(1��)� ), the transport network

equilibrium requires � > �2(k)(>
1�(1��)�

4 ), that is, density economies must be su¢ ciently small. It

can be understood as follows. Consider an extreme case in which density economies are very small:

� � �2(k), so that T (1; I�E) ' 1 and T (1; I�W ) ' 1. Thus, the cost of directly transporting a unit

of intermediate good to either East or West is approximately one, while that of the round-about

transportation is approximately 1 + k. Hence, neither region would develop a hub. However, as �

decreases (i.e., density economies become larger), the transport rates on both the North-East and

North-West tend to decrease. But, due to the manufacturing concentration (and hence, a larger

transport demand) in East, the transport rate on the trunk link (which in the present setting is the

North-East link) decreases more than that on the other (the North-West link). If density economies

are su¢ ciently large (� < �2(k)), and if the two regions are geographically close (k <
2(1��)�
1+(1��)� ), then

it becomes possible for a shipper in West to decrease the transport cost by using the round-about

route via East.

From the comparison between (27) and (29), we can see that when k � 2(1��)�
1+(1��)� , the assumed

transport pattern is always consistent with a transport network equilibrium. Since in this case the two

regions are very far from each other, the round-about transportation does not make sense even under

very large density economies. On the other hand, when k < 2(1��)�
1+(1��)� , the direct transport pattern

is a transport network equilibrium if and only if density economies are very large or very small, i.e.,

� � �1(k) or �2(k) � �, where �1(k) < 1�(1��)�
4 < �2(k) in this case.

The result obtained above is illustrated in Figure 5 which depicts the equilibrium share of the

manufacturing �rms in West (the agricultural region) which uses the direct North-West route for each
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value of � under the given set of other parameter values. The curve labeled �equilibria without a

hub�shows the range of � in which the divergent equilibrium without a hub exists.14 ;15 In sum, we

have the next proposition:16

Proposition 2 There uniquely exists a (symmetric) pair of divergent equilibria without a hub if and

only if one of the following (mutually exclusive) conditions are met: (i) k � 2(1��)�
1+(1��)� ; (ii) k <

2(1��)�
1+(1��)� with � � �1(k) or �2(k) � �.

Figure 5

4.3.2 Case with a hub formation

Next, we consider the divergent equilibrium with a hub. Without loss of generality, East is assumed

to be a hub. Then, the equilibrium manufacturing share in each region is given by (21). Note that

for a hub to form, density economies must be e¤ective on the North-East link, otherwise shippers in

West will want to procure intermediate goods directly from North, that is, the no-arbitrage condition

(5) is not satis�ed. It follows that the sum of transport cost for all intermediate goods shipped on

the North-East link should be �. Since in total, one unit of intermediate good is produced in North

in equilibrium, the amount that reaches East is 1� �. Thus, taking into account that pIN = wN , the
delivered price of intermediate good in East is given by

pIE = wN=(1� �): (30)

If IW units are shipped further from East to West, the delivered price of intermediate good in West

becomes

pIW = pIEf1 + T (k; IW )g: (31)

By using (30) and (31) together with (6), (8), (10) and (11), the demand for the intermediate good

in each region can be calculated as

I�E =
1� �
2

f1 + (1� �)�g; (32)

I�W f1 + T (k; I�W )g =
1� �
2

f1� (1� �)�g: (33)

Whether or not density economies are e¤ective on the East-West link depends on the relative values

of � and k. Obviously, density economies work when � is su¢ ciently small:

I�W 7 � if � ? �3(k); (34)

where

�3(k) �
1� (1� �)�

2(1 + k) + 1� (1� �)�: (35)

14The parameter values used here are the same as those in Figure 4. The same remark in footnote 12 applies.
15 In the �gure, obviously, when the divergent equilibrium without a hub exists, the share of manufacturing �rms in

West using the direct route is 1.
16We have a symmetric pair of equilibria by interchanging the roles of East and West.

17



Finally, we need to see if the transport pattern under the above con�guration is a transport network

equilibrium. This time, the relevant no-arbitrage condition is (5). Eq.(34) implies that the condition

should be examined in the two cases: � � �3(k) and � > �3(k). By comparing (33)-(35) and (5), it can
be seen that for � � �3(k) [resp., � > �3(k)], the range of � which satis�es the no-arbitrage condition
is limited to � � 1

2
1�(1��)�

1�(1��)�+2k [resp., � �
1�k
2 ]. It can be veri�ed that �3(k) 7

1
2

1�(1��)�
1�(1��)�+2k

[resp., �3(k) 7 1�k
2 ] if and only if k 7

1+(1��)�
2 . It basically says that in order for a hub to form in

equilibrium, density economies must be su¢ ciently large (relatively to k) to ensure that the round-

about transportation is indeed cost-saving for shippers in West. The threshold value of � can be

expressed as a function of k as follows:

�4(k) �
(

1�k
2 if k < 1+(1��)�

2
1
2

1�(1��)�
1�(1��)�+2k if k � 1+(1��)�

2

: (36)

Thus, the no-arbitrage condition (5) is satis�ed if

� � �4(k): (37)

Note that �4(k) is a (strictly) decreasing function of k. When the two regions are farther away, a

larger degree of density economies are required to sustain the hub formation, since the bene�t of

tra¢ c bundling must be large enough to overcome the long-haul cost along the round-about route for

shippers in West (the non-hub region). The curve labeled �equilibria with a hub� in each diagram

in Figure 5 shows the range of � in which the divergent equilibrium with a hub exists. The next

proposition summarizes the result for the case of a hub formation:17 ;18

Proposition 3 There uniquely exists a (symmetric) pair of divergent equilibria with a hub if and only

if � � �4(k) for each k > 0.

Moreover, it can be shown that

�2(k) < �4(k): (38)

By this, we have the next corollary to Propositions 2 and 3 (see also Figure 5):

Corollary 1 When no divergent equilibrium without a hub exists, there always exists a divergent

equilibrium with a hub.

Proposition 2 indicated that the divergent con�guration without a hub is not an equilibrium if

the two regions are geographically close (k < 2(1��)�
1+(1��)� ) and the degree of density economies are

intermediate (�1(k) < � < �2(k)). In this case, the con�guration violates the no-arbitrage condition

(4): shippers in the agricultural region will want to use the round-about route via the manufacturing

region. Corollary 1 assures that in such a case, indeed, there exists a divergent equilibrium with a

hub.
17 In the �gure, when a divergent equilibrium with a hub exists, all intermediate goods imported by West are shipped

via East. Hence the share of manufacturing �rms using the direct route is 0.
18As the diagrams indicate, it can be shown that whenever a divergent equilibrium with a hub and that without a

hub coexist, there exists a unique divergent equilibrium with a mixed transport pattern between them.
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5 Stability of equilibria

In this section, we study the stability of equilibria derived in the previous section. To this end, we

modify our model slightly for the ease of analysis. Namely, we divide the manufacturing sector in each

of East and West into two sectors depending on the transport route of intermediate goods. This way,

we can examine simultaneously the stability of both the transport and specialization patterns of a given

equilibrium. Each individual workers is assumed to belong to one of the two manufacturing sectors or

the agricultural sector in each region. Let niD(t) [resp., niI(t)] be the worker share of manufacturing

sector in region i 2 fE;Wg which imports intermediate goods directly [resp., indirectly] from North,

and N (t) � fnED(t); nEI(t); nWD(t); nWI(t)g 2 [0; 1]4 the distribution of manufacturing shares in
the economy at a given point in time t � 0.19 ;20 We consider a small perturbation to the equilibrium
industrial composition and transport pattern of intermediate goods in each region, and examine if the

equilibrium is recovered via an appropriate adjustment mechanism. Here, we assume the following

dynamics which is often used in the �eld of economic geography (e.g., Krugman, 1993b):

_nij = �(uij � ui)nij ; i 2 fE;Wg; j 2 fD; Ig; (39)

where _nij is a time derivative of nij , � a positive constant, uij the temporary-equilibrium utility level

of workers in sector j in region i, and ui �
P

j2fA;D;Ig nij(t)uij(t) the average temporary-equilibrium

utility level in region i. The temporary-equilibrium utility levels at each t are determined by using the

equilibrium model in Section 4 given the shares of manufacturing workers in each region nij(t) [refer to

Appendix A.1 for the temporary equilibrium conditions]. The adjustment mechanism, (39), assumes

that the workers are attracted to the sector associated with a higher utility level, and that the larger

the worker share of the sector, the greater the increment of the worker share of the sector. We say

that the equilibrium with the distribution of manufacturing shares, N � � fn�ED; n�WI ; n
�
WD; n

�
WIg, is

(locally and asymptotically) stable, if there exists a small neighborhood of N � such that from any

point in the neighborhood, the adjustment mechanism (39) leads N (t) back to the original equilibrium
N �, i.e., limt!1 nij(t) = n

�
ij for each i 2 fE;Wg and j 2 fD; Ig.

Leaving the proof to Appendix A.2, we state the result of the stability analysis as follows:21

Proposition 4 (i) A convergent equilibrium is stable if and only if � > �=2 and � � 1=4; (ii) a

divergent equilibrium without a hub is stable if and only if � < 1+(1��)�
4 ; (iii) any divergent equilibrium

with a hub is stable.

The stability of an equilibrium depends on the degree of transport density economies, �, and the

size of transport demand. The transport demand is limited by the supply capacity of intermediate

goods in North as well as the content of intermediate goods in the manufactured good (represented by

1��). An intuition behind the stability condition of the convergent equilibrium can be given as follows.
Let us focus on the case in which density economies are e¤ective on the transport links, i.e., � < 1=4.

19The density economies are assumed to work only for the shipments moving in the same direction on a given link.
20The share, niA(t), of the agricultural sector in region i at a given time t is given by 1�

P
j2fD;Ig nij(t).

21Assumption 1 is irrelevant for (i).
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In this context, the specialization patterns of East and West are identical (refer to Proposition 1).

Notice that for an equilibrium to be stable, an expansion of the manufacturing employment in any

region must result in a decrease in the wage rate of the manufacturing workers in the region (relative

to that of the agricultural workers). Consider, at a convergent equilibrium, a small shift of labor

from agriculture to manufacture in East. Since the manufacturing production is homothetic, �rms

would increase their intermediate inputs in proportion to the labor increase, under given factor prices

at the equilibrium level. However, this increase in the demand for intermediate goods a¤ects factor

prices in the following two ways: (i) it raises the f.o.b. price of the intermediate good by competition

for the good between the two regions, and (ii) it reduces the transport margin because of economies

of density. Thus, the direction of change in the delivered price, pIE , of intermediate good in East is

determined by the relative sizes of the two e¤ects.

If � is very small, the share of transport margin in the delivered price is also small, which makes the

second e¤ect negligible. In this case, the intermediate input in East increases less than proportionately

to the labor input because of the rise in pIE by the �rst e¤ect. As � gets larger, the second e¤ect

becomes more signi�cant and reduces pIE , which induces more demand for the intermediate good.

But, obviously the intermediate input in East cannot increase beyond an upper bound which is given

by the supply capacity in North. As the demand in East gets closer to the bound, the delivered price

will rise unboundedly if the intermediate good is essential for manufacturing (as in the case of the

present model). As a result, if � > �=2, �rms do not increase (rather, they tend to decrease) their

intermediate input with a given increase in the labor input. Thus, the delivered price of intermediate

good rises, and hence, the wage rate of the manufacturing workers declines in East. In either case,

the shifted workers will move back to the agricultural sector, which means that the equilibrium is

stable. Since the factor share of the intermediate good is given by 1� �, a smaller � implies that the
manufacturing production uses the intermediate good more intensively. This in turn means that the

given supply capacity in North is relatively small, and accordingly that the upper bound of � is lower.

For result (ii) in Proposition 4, by (24) and (25), if � � 1+(1��)�
4 , density economies are not

e¤ective given any feasible specialization pattern. As we have discussed in Sections 4.2 and 4.3.1(ii),

the specialization patterns of East and West are arbitrary as long as the aggregate demand and

aggregate supply match, that is, as long as (12) and (15) are satis�ed. In that sense, no equilibrium is

stable in this range of �. If economies of transport density are su¢ ciently large (� < 1+(1��)�
4 ), then

it becomes possible for one transport route to have an absolute cost advantage over the other. This

advantage will not vary with a small perturbation of transport pattern, so that the manufacturing

localization is stable. When a hub is formed, this advantage in the manufacturing region is even

greater, and hence, the equilibrium is stable as stated in result (iii).

6 Welfare

Let us denote by U c the (common) utility level of East and West in a convergent equilibrium, and

by Uno-hubM and UhubM [resp., Uno-hubM and UhubA ] the utility levels of the manufacturing region [resp.,

agricultural region] respectively in a divergent equilibrium without a hub and that with a hub. The
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utility levels can be calculated by using (1), (10), (11) and an appropriate expression for the price of

intermediate goods ((16), (30) or (31)). To get the basic insight, let us focus on the values of � and k

under which all of the convergent and divergent equilibria coexist. By Propositions 1, 2, 3, and (38),

the desired situation is guaranteed if � � �4(k). In this context, the utility level of workers in each
region can be ordered as follows:

Uno-hubA < U c < Uno-hubM < UhubM . (40)

The order of UhubA depends on the distance between East and West, k. The interpretation can be

given as follows.

If a hub is not formed, the manufacturing region improves its welfare level (relatively to that of the

convergent equilibrium under the same parameter values) at the expense of the agricultural region. It

is because the manufacturing region enjoys a lower delivered price of intermediate good, and hence, a

lower price of manufactured good, while the agricultural region cannot bene�t from density economies

on the trunk link between North and the manufacturing region, since the region does not use it (the

�rst two inequalities in (40)). If a hub is formed, the welfare level in the manufacturing region is the

highest, since density economies on the trunk link are at their maximum (the last inequality in (40)).

The agricultural region, however, may or may not improve its welfare level by the formation of

a hub. If East and West are geographically close, then the bene�t of tra¢ c bundling due to density

economies outweighs the cost of the round-about transportation via the hub. In fact, if k is very small,

we even have Uno-hubM < UhubA . But, if the two regions are far from each other, then the long-haul

costs using the round-about route will be very expensive. In that case, the workers in the agricultural

region are better o¤ in the divergent equilibrium without a hub under the same set of the parameter

values: UhubA < Uno-hubA . In general, as k decreases, the ranking of UhubA goes up from the last to only

next to UhubM in (40).22

7 Concluding remarks

In the paper, we presented a general equilibrium model of a spatial economy in which the interregional

trade pattern and the structure of the interregional transport network are endogenously determined

in the presence of economies of transport density. In particular, we have shown that economies of

transport density can be the key source of industrial agglomeration. Agglomeration economies are

generated by the circular causation between economies of transport density and industrial localization:

a greater concentration of industries in a given region generates a larger transport �ow through

the region, and lowers the cost of transportation via the region due to density economies, which in

turn attracts a larger number of �rms to the region. A successful region eventually emerges as an

interregional transport hub as well as an industrial center.

Although we primarily focused on the positive aspects, some normative implications of the presence

of economies of transport density are also obtained. Namely, the welfare levels of all regions can be

enhanced by the formation of a transport hub when the regions are geographically close. Otherwise,

22Details of the welfare analysis can be obtained from the authors upon request.
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the hub region improves its welfare at the expense of the non-hub regions. Our stability analysis

further indicated that on one hand, noncooperative transport developments by regions might end

up with an excess investment on the transport infrastructure. It is because not all of the improved

transport routes can attract transport demand, since the transport routes tend to be self-integrated

in the presence of economies of transport density. Coordination among regions in �nancing transport

development (especially in developing a hub) may possibly bring about welfare improvement to all

regions.
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A Appendix

A.1 Temporary equilibrium

We say that the economy is in temporary equilibrium if given the trade and transport patterns, all

markets clear, �rms earn zero pro�ts, manufacturing workers employed by �rms which use the same

transport route achieve the same utility level, and agricultural workers in each region likewise achieve

the same utility level. For convenience, we say that manufacturing �rms in region i which use transport

route ` belong to sector i-`. In this context, the delivered prices of intermediate good in region i can

be written as follows:

pIiD = wNf1 + T (1; Ii)g; (41)

pIiI = p
I
jDf1 + T (k; IiI)g; i 6= :j 2 fE;Wg; (42)

where

Ii � IiD + IjIf1 + T (k; IjI)g; (43)

Next, the market clearing of intermediate goods, (8), is rewritten as follows:

IEf1 + T (1; IE)g+ IW f1 + T (1; IW )g = 1: (44)

Equation (6) is rewritten as follows:

wiD =
�

1� �
IiD
niD

wNf1 + T (1; Ii)g; i 2 fE;Wg; (45)

wiI =
�

1� �
IiI
niI
wNf1 + T (k; IiI)gf1 + T (1; Ij)g; i 6= j 2 fE;Wg: (46)

The market clearing of the agricultural good assures the following equality:

wN =
1� �
1=�� 1(2� nED � nEI � nWD � nWI): (47)

Next, if niD; niI > 0, the no-arbitrage condition for manufactured good means that pMi � pMiD = pMiI
(i = E;W ), which in turn implies wiD=wiI = (pIiI=p

I
iD)

(1��)=� by (7), while wiD=wiI > [resp., <]

(pIiI=p
I
iD)

(1��)=� if niD > 0 and niI = 0 [resp., niD = 0 and niI > 0]. By using (41) and (42), we

obtain the following relation:�
wiD
wiI

��=(1��)
� 1 + T (k; IiI)
1 + T (1; Ii)

f1 + T (1; Ij)g
>
=
<

,
niD > 0; niI = 0
niD; niI > 0
niD = 0; niI > 0

:: (48)

This implies that the labor cost di¤erential between the two sectors, i-D and i-I, must be compensated

for by the di¤erential of intermediate good prices, if both sectors D and I are active in region i. By

using the derivation similar to that for (12), the market clearing of manufactured good can be obtained

as follows: X
i2fE;Wg

X
j2fD;Ig

Nijwij = ��

0@nwN + X
i2fE;Wg

X
j2fA;D;Ig

nijwij

1A ; (49)

where wiA = 1 (i = E;W ). Finally, if both of East and West are exporting manufactured goods, then

we need to add the no-arbitrage condition for the manufactured good:

pME = pMW : (50)
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A.2 Proof of Proposition 4

For the equilibria without mixed transport route, i.e., n�iDn
�
iI = 0 (i = E;W ), by applying the

no-arbitrage condition, (4) or (5), the stability analysis can be simpli�ed by reducing the relevant

dimension of dynamics (39). Namely, we have the following preliminary result:

Lemma 1 Suppose that an equilibrium is stable when no perturbation of transport pattern is allowed

(i.e., Nij(t) = 0 is assumed for any t > 0 if N�
ij = 0; where i = E;W; j = D; I). Then, provided that

the no-arbitrage condition, (4) or (5), for intermediate goods is satis�ed with a strict inequality, the

equilibrium is also stable even if an arbitrarily small perturbation of transport pattern is considered.

Proof: Since proofs are similar for di¤erent equilibrium con�gurations, we only prove the lemma for

a divergent equilibrium with a hub in which East is the hub (i.e., n�ED; n
�
WI > 0; n

�
EI = n

�
WD = 0).

Suppose, the equilibriumN � is stable under the adjustment mechanism (39) with a constraint nEI(t) =

nWD(t) = 0 for all t > 0. Next, suppose that in East [resp., West], a fraction of the population "EI > 0

[resp., "WD > 0] were made to import intermediate goods indirectly via West [resp., directly from

North] and assemble the manufactured good. Let n�ED � "ED > 0 [resp., n�WI � "WI > 0] be the

share of the manufacturing sector in East [resp., West] which imports intermediate goods directly

from North [resp., indirectly via East], and let n�EA � "EA > 0 [resp., n�WA � "WA > 0] be the

agricultural share in East [resp., West] after this perturbation. Then, by de�nition, we have that

"EI = "ED + "EA and "WD = "WI + "WA. Let us de�ne that " = j"EI j + j"WDj. Given this new
division of labor, the adjustment process is set o¤ following the dynamics de�ned by (39), which is

to be solved given the initial conditions, nED(0) = n�ED � "ED, nEI(0) = "EI ; nWD(0) = "WI , and

nWI(0) = n�WI � "WI : Now, suppose that no-arbitrage condition for intermediate goods, (5), holds

with strict inequality under N �. Let us denote by ~wEI(N �) and ~wWD(N �), the maximum wage

rate under N � which can be attained in East and West respectively by deviating from the current

transport pattern of intermediate goods. Then, it must hold that ~wEI(N �) < w�ED � ~wED(N �)

and ~wWD(N �) < w�WI � ~wWI(N �). Therefore, provided that the temporary equilibrium wage rates,

wij (i = E;W; j = A;D; I), are continuous in N = (NED; NEI ; NWD; NWI) in a neighborhood of

N � = (N�
ED; 0; 0; N

�
WI), we can �nd a su¢ ciently small " such that for any initial perturbation of

labor division, �N � ("ED;�"EI ;�"WD; "WI) such that wEI(0) < �wE(0) and wWD(0) < �wW (0);

where �wE(0) �
P

i2fD;IgNEi(0)wEi(0) + NEAwEA � NED(0)wED + NEA(0)wEA(0) � w�E and

�wW (0) �
P

i2fD;IgNWi(0)wWi(0)+NWAwWA � NWI(0)wWI+NWA(0)wWA(0) � w�W . Then, again
by the continuity of temporary wage functions, this implies that there exists a number h > 0 such that

wEI(t) < �wE(t) and wWD(t) < �wW (t) for all t < h; which in turn implies that _nEI(t); _nWD(t) < 0

for all t < h. Since this result always holds when we choose " su¢ ciently small, and the equilibrium

is stable when the transport pattern is �xed, we can conclude that it is also stable even if we allow

an arbitrarily small perturbation of transport pattern. Q.E.D.

Since the proofs for (i), (ii) and (iii) are similar, we only prove (i). By Lemma 1, we only need to

prove the stability of a symmetric equilibrium when intermediate goods are allowed to be transported
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directly to East and West from North. Moreover, since there is no migration of workers across regions,

the stability of an equilibrium under the adjustment mechanism (39) is equivalent to that under the

modi�ed adjustment mechanism of (39) with uij and ui replaced by wij and wi (�
P

j2fA;D;Ig nijwij),

respectively. Let ni be the manufacturing share in region i. Then, the linearization of dynamical

system (39) can be written as follows:

_N(�) = �(N �)N(�); (51)

where N(�) is a 2-by-1 matrix whose �rst [resp., second] element is nE�n�E [resp., nW �n�W ]; �(N �)

is a (E,W)-by-(E,W) matrix whose ij-th element is �(1� n�i )n�iw�0ij , where w�0ij � dwi=dnj jN=N� . For

a convergent equilibrium, we have

w�0ij = w
�0
ji; i; j 2 fE;Wg: (52)

It follows that the eigenvalues, �1 and �2, of �(N �) can be written as follows:

�i = w
�0
EE + (�1)iw�0EW ; i 2 f1; 2g: (53)

Since intermediate goods are directly transported to East and West, we have

IiD = Ii; i 2 fE;Wg: (54)

Suppose � < 1=4. Then, economies of density are e¤ective on each transport link in the neighborhood

of the equilibrium, i.e.,

T (1; Ii) = �=Ii; i 2 fE;Wg: (55)

By substituting (54) and (55) into (41), (44) and (45), we obtain the following:

pIi = wN (1 + �=Ii); i 2 fE;Wg; (56)

wi =
�

1� � (wN=ni)(Ii + �); i 2 fE;Wg; (57)

IE + IW = 1� 2�; (58)

where wN is given by (47). Next, by substituting (56) and (57) into the no-arbitrage condition for the

manufactured good, (50), and totally di¤erentiating IE with respect to nE , we obtain the following:

dIE=dnE jN=N� = �dIE=dnW jN=N� = (1=4)(1=�� 1 + �)(1� 2�)=(�� 2�); (59)

where (58) is taken into account. Now, by di¤erentiating (57) with respect to nE and nW respectively,

and evaluating at the convergent equilibrium, we obtain the following:

w�0EE = �1=n�E +
�

1� � fw
�0
NE(I

�
E + �) + w

�
NdIE=dnE jN=N�g =n�E ; (60)

w�0EW =
�

1� � fw
�
NW (I

�
E + �)� w�NdIE=dnE jN=N�g =n�E : (61)

By substituting (47) and (59) into (60) and (61), and using (53), we can solve for the eigenvalues:

�1 = (1=�� 1 + �)f(1� 2�)=(�� 2�)� 1g R 0, � Q �=2: (62)
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�2 = �f1� (1� �)�g2=f��(1� �)g < 0; (63)

Recall that for � > 1=4, any pair of manufacturing shares, (n�E ; n
�
W ), satisfying (12) and (19), is an

equilibrium by Proposition 1. Hence, a symmetric equilibrium is unstable in this range of �. With

this, (62) and (63) indicate that when only the direct transportation of intermediate goods to East

and West is allowed, a convergent equilibrium is stable if and only if � > �=2 and � � 1=4. This

result combined with Lemma 1 completes the proof of (i). Q.E.D.
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