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Abstract  
This paper presents a micro-model of knowledge creation and transfer in a small group of 
people. Our model incorporates two key aspects of the cooperative process of knowledge 
creation: (i) heterogeneity of people in their state of knowledge is essential for successful 
cooperation in the joint creation of new ideas, while (ii) the very process of cooperative 
knowledge creation a¤ects the heterogeneity of people through the accumulation of knowledge
in common. The model features myopic agents in a pure externality model of interaction. In 
the two person case, we show that the equilibrium process tends to result in the accumulation 
of too much knowledge in common compared to the most productive state. Unlike the 
two-person case, in the four person case we show that the equilibrium process of knowledge 
creation may converge to the most productive state. Equilibrium paths are found analytically, 
iscontinuous function of initial heterogeneity.  
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1 Introduction

1.1 The Research Agenda

How do knowledge creation and transfer occur? How do they perpetuate them-

selves? How do agents change during this process? We attempt to provide

microfoundations for knowledge creation and transfer.

As people create and transfer knowledge, they change. Thus, the history

of meetings and their content is important. If people meet for a long time,

then their base of knowledge in common increases, and their partnership even-

tually becomes less productive. Similarly, if two persons have very di¤erent

knowledge bases, they have little common ground for communication, so their

partnership will not be very productive. In fact, whether a person is working

alone or working with others, they could obtain a knowledge base that is not

very compatible with that of another person who has not worked with them

previously.

For these reasons, we attempt to model endogenous agent heterogeneity, or

horizontal agent di¤erentiation, to look at the permanent e¤ects of knowledge

creation and growth. Thus, we are examining how social capital is accumu-

lated at a micro level. Our model is analytically tractable, so we do not have

to resort to simulations; we �nd each equilibrium path explicitly. The model is

also at an intermediate level of aggregation. That is, although it is at a more

micro level than large aggregate models such as those found in the endogenous

growth literature, we do not work out completely its microfoundations. That

is left to future research.

The analogy between partner dancing and working jointly to create and

exchange knowledge is useful, so we will use terms from these activities inter-

changeably. We assume that it is not possible for more than two persons to

meet or dance at one time, though more than one couple can dance simulta-

neously. Knowledge creation, exchange, and individual production all occur

simultaneously at each point in time. Agents seek to maximize the current

�ow of income (the same as production), so a myopic core concept is used.

The dancers can work alone or with a partner. Production always occurs at

a rate proportional to the agent�s current stock of knowledge, as does knowl-

edge creation when an agent dances alone. The suitability of dance partners

depends on the stock of knowledge they have in common and their respective

stocks of exclusive knowledge. The fastest rate of knowledge creation occurs

when these factors are in balance.
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Our results are summarized as follows. First, in a two person model

where myopic agents can decide whether or not to work with each other, there

exist many sink points in the interaction game, depending discontinuously

on initial heterogeneity. The most interesting of these features too much

homogeneity relative to the most productive state. In the four person model,

where agents can choose to work alone or to collaborate with another (under

certainty about everyone�s state of knowledge), there is a unique sink point that

depends discontinuously on initial conditions. When the initial state features

relative homogeneity of knowledge between agents, the sink will be the most

productive state. This last result is the most surprising to us, as we posit a

model with myopic agents and no markets, but rather with only externalities

in interactions between agents, so one would not expect e¢ cient outcomes.

An important question for future research is whether this implication is robust

to aggregation of agents into larger models, as it could contrast with welfare

properties of equilibria in the endogenous growth literature, and thus call into

question their microfoundations. For instance, it is possible that neither

markets nor government intervention are necessary to obtain e¢ ciency.

Perhaps the strongest empirical support for the type of model we construct

can be found in Agrawal et al (2003). Using patent data, they �nd that

when an inventor moves, he cites patents from his previous location more than

patents at other locations. We believe that our model can be tested further by

examining the dynamic pattern of coauthorships in economics or other �elds.

Do they follow the interaction paths predicted by our model? Speci�cally,

our model predicts that dynamic interaction patterns only take place in one

of four speci�ed sequences.

For simplicity, we employ a deterministic framework. It seems possible to

add stochastic elements to the model, but at the cost of complexity. It should

also be possible to employ the law of large numbers to a more basic stochastic

framework to obtain equivalent results.

Next we compare our work to the balance of the literature. Section 2 gives

the model and notation, Section 3 analyzes equilibrium in the case of two

participants or dancers, Section 4 examines welfare in the two person model,

Section 5 extends the model to four persons and analyzes equilibrium and

welfare, whereas Section 6 provides our conclusions and suggestions for future

dancing. Two appendices provide the proofs of key results.

4



1.2 Related Literature

The basic framework that employs knowledge creation as a black box driving

economic growth is usually called the endogenous growth model. Here we make

a modest attempt to open that black box. The literature using this black box

includes Shell (1966), Romer (1986, 1990), Lucas (1988), Jones and Manuelli

(1990), and many papers building on these contributions. There are two key

features of our model in relation to the endogenous growth literature. First,

our agents are heterogeneous, and that heterogeneity is endogenous to the

model. Second, the e¤ectiveness of the externality between agents working

together can change over time, and this change is endogenous.

Fujita and Weber (2003) consider a model where heterogeneity between

agents is exogenous and discrete. They examine the e¤ects of immigration

policy on the productivity and welfare of workers. They note that progress

in technology in a country where workers are highly trained is in small steps

involving intensive interactions between workers and a relatively homogeneous

work force, whereas countries that specialize in production of new knowledge

have a relatively heterogeneous work force. This motivates our examination of

how endogenous worker heterogeneity a¤ects industrial structure, the speed of

innovation, and the pattern of worker interaction.

The literature that motivated us to try to construct foundations for knowl-

edge creation is the work in urban economics on cities as the factories of new

ideas. In her classic work, Jane Jacobs (1969, p. 50) builds on Marshall (1890)

when discussing innovation: �This process is of the essence in understanding

cities because cities are places where adding new work to older work proceeds

vigorously. Indeed, any settlement where this happens becomes a city.� Lucas

(1988, p. 38) extends this:

But, as Jacobs has rightly emphasized and illustrated with hun-

dreds of concrete examples, much of economic life is �creative�in

much the same way as is �art�and �science�. New York City�s gar-

ment district, �nancial district, diamond district, advertising dis-

trict and many more are as much intellectual centers as is Columbia

or New York University. The speci�c ideas exchanged in these cen-

ters di¤er, of course, from those exchanged in academic circles, but

the process is much the same. To an outsider, it even looks the

same: a collection of people doing pretty much the same thing,

emphasizing his own originality and uniqueness.
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Recent work in this line of research includes Fujita and Thisse (2002, chap-

ter 11), Berliant et al (2003), Duranton and Puga (2001), and Helsley and

Strange (2003). Contemporary empirical complements can be found in Gre-

unz (2003) and Bair and Gere¢ (2001, 2003).

Di¤erentiation of agents in terms of quality (or vertical characteristics) of

knowledge is studied in Jovanovic and Rob (1989) in the context of a search

model. In contrast, our model examines (endogenous) horizontal heterogene-

ity of agents and its e¤ect on knowledge creation, knowledge transfer, and

consumption. We employ myopic agents in a setting with no uncertainty (in

particular about what other agents know), so search is unnecessary. They fo-

cus on the implementation of ideas as distinct from their conception, whereas

we employ simultaneous knowledge creation, transfer, and good production.1

Finally, due to the di¤erences in the models, the results are di¤erent. They

obtain a unique steady state independent of initial conditions, and e¢ ciency of

the steady state when there are no externalities in pairwise meetings. We ob-

tain a steady state equilibrium that is highly dependent on initial conditions,

and that can be e¢ cient when there are externalities for a non-negligible set

of initial conditions.

A very interesting contribution that is related to our work is Keely (2003).

It studies the formation of geographical clusters of innovative and knowledge

sharing activity when ideas and productivity are related to the number of

skilled workers in a cluster. There are two major di¤erences between this

work and ours. First, Keely (2003) employs exogenously given technology for

the production of ideas and �nal good production as a function of (skilled)

labor in a cluster. In contrast, we attempt to open the black box of ideas

and productivity by modeling interactions, speci�cally knowledge sharing and

creation, between pairs of agents. Second, in Keely (2003), the only source

of heterogeneity in agents is their level of technology, represented by a coef-

�cient on the �nal good production function; thus, it is a model of vertical

di¤erentiation of knowledge, and more closely related to Jovanovic and Rob

(1989). Here we use much richer form of horizontal heterogeneity, and thus a

very di¤erent form of idea and goods production. This is implicit in models

of vertical di¤erentiation, as workers with higher levels of skills somehow learn

1Since agents are only di¤erentiated vertically, although it is clear in the Jovanovic and

Rob (1989) model how knowledge transfer between an agent with more knowledge to an

agent with less knowledge can occur when the two are matched, it is less obvious how the

agent with a higher level of knowledge increases their knowledge level through a match with

an agent with a lower level of knowledge.
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from workers with lower levels.

There are many more di¤erences between our model and Keely�s. In terms

of assumptions, we use myopic rather than forward looking agents, and we are

able to distinguish between knowledge sharing and creation, whereas Keely

builds both into the technology. In terms of results, we are able to solve our

model analytically, whereas Keely does not. Our equilibrium patterns depend

discontinuously on parameters, whereas Keely has a unique equilibrium for all

parameters that depends continuously on them. Finally, Keely�s equilibrium

is always in the core, whereas ours can be ine¢ cient. We can address the

following kinds of questions that Keely�s model cannot address. How does ini-

tial worker heterogeneity among those equally skilled a¤ect outcomes? When

does agent myopia result in ine¢ ciency? Is there a di¤erence in the e¤ects of

changes in knowledge creation and sharing technologies on endogenous vari-

ables? Will agents with very di¤erent backgrounds end up working together,

or are agents strati�ed as in Keely(2003)? Implicit in the Agrawal et al (2003)

evidence is horizontal di¤erentiation of agents.

Finally, interesting but less closely related models can be found in Auer-

swald et al (2000), Jovanovic and Nyarko (1996), and Jovanovic and Rob

(1990).

2 The Model - Ideas and Knowledge

In this section, we introduce the basic concepts of our model of ideas and

knowledge.

An idea is represented by a box. It has a label on it that everyone can

read (the label is common knowledge in the game we shall describe). This

label describes the contents. Each box contains an idea that is described by

its label. Learning the actual contents of the box, as opposed to its label,

takes time, so although anyone can read the label on the box, they cannot

understand its contents without investing time. This time is used to open the

box and to understand fully its contents. An example is a recipe for making

�udon noodles as in Takamatsu.� It is labelled as such, but would take time

to learn. Another example is reading a paper in a journal. Its label or title

can be understood quickly, but learning the contents of the paper requires an

investment of time. Production of a new paper, which is like opening a new

box, either jointly or individually, also takes time.

Suppose we have an in�nite number of boxes, each containing a di¤erent
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piece of knowledge, which is what we call an idea. We put them in a row in

an arbitrary order.

There are N persons in the economy, where N is a �nite integer. People

are indexed by i and j. At this point, we assume that there are only two

people; general indexing is used so that we can add more people to the model

later. We assume that each person has a replica of the in�nite row of boxes

introduced above, and that each copy of the row has the same order. Our

model features continuous time. Fix time t 2 R+ and consider any person
i. A box is indexed by k = 1; 2; ::: Take any box k. If person i knows the

idea inside that box, we put a sticker on it that says 1; otherwise, we put a

sticker on it that says 0. That is, let xki (t) 2 f0; 1g be the sticker on box k
for person i at time t. The state of knowledge, or just knowledge, of person i

at time t is thus de�ned to be Ki(t) = (x
1
i (t); x

2
i (t); :::) 2 f0; 1g1. The reason

we use an in�nite vector of possible ideas is that we are using an in�nite time

horizon, and there are always new ideas that might be discovered, even in

the preparation of udon noodles. More formally, let H be the Hilbert cube; it

consists of all real sequences with values in [0; 1]. That is, if N is the set of
natural numbers, then H = [0; 1]N. So the knowledge of person i at time t,

Ki(t), is a vertex of the Hilbert cube H. Notice that given any vertex of H,
there exists an in�nite number of adjacent vertices. That is, given Ki(t) with

only �nitely many non-zero components, there is an in�nite number of ideas

that could be created in the next step.

In this paper, we will treat ideas symmetrically. All that will matter is the

number an agent knows at a particular time. Extensions to idea hierarchies

and knowledge structures will be discussed in the conclusions.

Given Ki(t) = (x
1
i (t); x

2
i (t); :::),

ni(t) =
1X
k=1

xki (t) (1)

represents the number of ideas known by person i at time t. Next, we will

de�ne the number of ideas that two persons, i and j, both know. Assume that

j 6= i. De�ne Kj(t) = (x
1
j(t); x

2
j(t); :::) and

ncij(t) =
1X
k=1

xki (t) � xkj (t) (2)

So ncij(t) represents the number of ideas known by both persons i and j at

time t. Notice that i and j are symmetric in this de�nition, so ncij(t) = n
c
ji(t).
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De�ne

ndij(t) = ni(t)� ncij(t) (3)

to be the number of ideas known by person i but not known by person j at

time t.

Knowledge is a set of ideas that are possessed by a person at a particular

time. However, knowledge is not a static concept. New knowledge can be

produced either individually or jointly, and ideas can be shared with others.

But all of this activity takes time.

Now we describe the components of the rest of the model. Consider �rst a

model with just two agents, i and j. At each time, each faces a decision about

whether or not to meet with the other. If both want to meet at a particular

time, a meeting will occur. If either does not want to meet, then they do not

meet. If the agents do not meet at a given time, then they produce separately

and also create new knowledge separately. If the two persons do decide to

meet at a given time, then they share older knowledge together and create

new knowledge together.

So consider a given time t. In order to explain how knowledge creation,

knowledge exchange, and commodity production work, it is useful for intuition

(but not technically necessary) to view this time period of �xed length as

consisting of subperiods of �xed length. Each individual is endowed with a

�xed amount of labor that is supplied inelastically during the period. In the

�rst subperiod, individual production takes place. We shall assume constant

returns to scale in physical production, so it is not bene�cial for individuals

to collaborate in production. Each individual uses their labor during the �rst

subperiod to produce consumption good on their own, whether or not they are

meeting. We shall assume below that although there are no increasing returns

to scale in production, the productivity of a person�s labor depends on their

stock of knowledge. Activity in the second subperiod depends on whether or

not there is a meeting. If there is no meeting, then each person spends the

second subperiod creating new knowledge on their own. Evidently, the new

knowledge created during this subperiod can di¤er between the two persons,

because they are not communicating. They open di¤erent boxes. Since there

is an in�nity of di¤erent boxes, the probability that the two agents will open

the same box (even at di¤erent points in time), either working by themselves

or in distinct meetings, is assumed to be zero. If there is a meeting, then

the second subperiod is divided into two parts. In the �rst part, the two

persons who are meeting spend their time (and labor) sharing old knowledge,
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boxes they have opened in previous time periods that the other person has not

opened. In the second part, they create new knowledge together, so they open

boxes together.2 We wish to emphasize that the division of a time period

into subperiods is purely an expositional device. Rigorously, whether or not

a meeting occurs determines how much attention is devoted to the various

activities at a given time.

What do the agents know when they face the decision about whether or not

to meet at time t? Each person knows both Ki(t) and Kj(t). In other words,

each person is aware of their own knowledge and is also aware of the other�s

knowledge. Thus, they also know ni(t), nj(t), ncij(t) = n
c
ji(t), n

d
ij(t), and n

d
ji(t)

when they decide whether or not to meet at time t. The notation for whether

or not a meeting actually occurs at time t is: �ij(t) � �ji(t) = 1 if a meeting
occurs and �ij(t) � �ji(t) = 0 if no meeting occurs at time t. Meetings only

occur if both persons agree that a meeting should take place.

Next, we must specify the dynamics of the knowledge system and the ob-

jectives of the people in the model in order to determine whether or not they

decide to meet at a particular time. In order to accomplish this, it is easi-

est to abstract away from the notation for speci�c boxes, Ki(t), and to focus

on the dynamics of the quantity statistics related to knowledge, ni(t), nj(t),

ncij(t) = n
c
ji(t), n

d
ij(t), and n

d
ji(t). Since we are treating ideas symmetrically, in

a sense these quantities are su¢ cient statistics for our analysis.

The simplest piece of the model to specify is what happens if there is no

meeting and the two people thus work in isolation. Let ai(t) be the rate of

creation of new ideas created by person i and let aj(t) be the rate of creation

of new ideas created by j, both at time t. Let bij(t) and bji(t) be the rate of

transfer of ideas from i to j and from j to i, respectively, at time t.3 Then

we assume that the creation of new knowledge during isolation (�ij(t) = 0) is

governed by the following equations:

ai(t) = � � ni(t) and aj(t) = � � nj(t) when �ij(t) = 0. (4)

bij(t) = 0 and bji(t) = 0 when �ij(t) = 0.

So we assume that if there is no meeting at time t, individual knowledge grows

2Clearly, the creation of this paper is an example of the process described.
3In principle, all of these time-dependent quantities are positive integers. However, for

simplicity we take them to be continuous (in R+) throughout the paper. One interpretation
is that the creation or sharing of an idea occurs at a stochastic time, and the real numbers

are taken to be the probability of a jump in a Poisson process. The justi�cation of the use

of a real number instead of an integer seems to add little but complication to the analysis.
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at a rate proportional to the knowledge already acquired by an individual.

Meanwhile, knowledge held commonly by the two persons does not grow. In

particular, ideas are not shared.

If a meeting does occur at time t (�ij(t) = 1), then both knowledge exchange

between the two persons and joint knowledge creation occur. When a meeting

takes place, joint knowledge creation is governed by the following dynamics :

aij(t) = � � [ncij(t) � ndij(t) � ndji(t)]
1
3 (5)

So when two people meet, joint knowledge creation occurs at a rate propor-

tional to the normalized product of their knowledge in common, the individual

knowledge of i, and the individual knowledge of j. The rate of creation of new

knowledge is highest when the proportions of ideas in common, ideas exclusive

to person i, and ideas exclusive to person j are split evenly. Ideas in common

are necessary for communication, while ideas exclusive to one person or the

other imply more heterogeneity or originality in the collaboration. If one per-

son in the collaboration does not have exclusive ideas, there is no reason for

the other person to meet and collaborate. The multiplicative nature of the

function in equation (5) drives the relationship between knowledge creation

and the relative proportions of ideas in common and ideas exclusive to one or

the other agent.

Under these circumstances, no knowledge creation in isolation occurs. Dur-

ing meetings at time t, knowledge transfer occurs in addition to the creation

of new knowledge. Knowledge transfer is governed by the following dynamics:

bij(t) = 
 � [ndij(t) � ncij(t)]
1
2 (6)

bji(t) = 
 � [ndji(t) � ncij(t)]
1
2

So when a meeting occurs, knowledge transfer from i to j happens at a rate

proportional to the normalized product of the number of ideas that person i

has but that person j does not have, and the ideas common to both persons.

The explanation is that communication is necessary for knowledge transfer, so

the two persons must have some ideas in common (ncij(t)). But in addition,

person i must have some ideas that are not already possessed by person j

(ndij(t)). The same intuition applies to knowledge transfer in the opposite

direction from j to i, represented by the second equation in (6). The change

in the number of ideas that both persons have in common ( _ncij(t)) is the sum

of knowledge transfers in both directions and the new ideas jointly created.

From person i�s perspective, the number of ideas that i has but j doesn�t have
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(ndij(t)) decreases with knowledge transfers from i to j. Finally, the change

in the number of ideas possessed by person i is the sum of the ideas that are

jointly created and the number of ideas transferred from j to i. The analogous

statements hold for the variables associated with j.

Let us focus on agent i (the equations for agent j are analogous). With

a meeting, we have the following dynamics incorporating both knowledge cre-

ation and transfer:

_ni(t) = aij(t) + bji(t)

_ncij(t) = aij(t) + bij(t) + bji(t)

_ndij(t) = �bij(t)

Given this structure, we can de�ne the rates of idea innovation and knowl-

edge transfer at time t, depending on whether or not a meeting occurs.

_ni(t) = [1� �ij(t)] � � � ni(t) +
�ij(t) � (� � [ncij(t) � ndij(t) � ndji(t)]

1
3 + 
 � [ndji(t) � ncij(t)]

1
2 )

_ncij(t) = �ij(t) � (� � [ncij(t) � ndij(t) � ndji(t)]
1
3 + 
 � [ndji(t) � ncij(t)]

1
2

+
 � [ndij(t) � ncji(t)]
1
2 )

_ndij(t) = [1� �ij(t)] � � � ni(t)� �ij(t) � 
 � [ndij(t) � ncji(t)]
1
2

Whether a meeting occurs or not, there is production in each period for

both persons. Felicity in that time period is de�ned to be the quantity of

output.4 De�ne yi(t) to be production output (or felicity) for person i at time

t, and de�ne yj(t) to be production output (or felicity) of person j at time t.

Normalizing the coe¢ cient of production to be 1, we take

yi(t) = ni(t) (7)

so

_yi(t) = _ni(t)

By de�nition,
_yi(t)

yi(t)
=
_ni(t)

ni(t)
(8)

which represents the rate of growth of income.

4Given that the focus of this paper is on knowledge creation rather than production, we

use the simplest possible form for the production function.
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Finally, we must de�ne the rule used by each person to decide whether they

want a meeting at time t or not. Formally,

�ij(t) = 1 () (9)

� � [ncij(t) � ndij(t) � ndji(t)]
1
3 + 
 � [ndji(t) � ncij(t)]

1
2 > � � ni(t) and

� � [ncji(t) � ndji(t) � ndij(t)]
1
3 + 
 � [ndij(t) � ncji(t)]

1
2 > � � nj(t)

To keep the model tractable in this �rst analysis, we assume a myopic rule. So

a person would like a meeting if and only if the increase in their rate of output

with a meeting is higher than the increase in their rate of output without a

meeting.5 Note that we use the increase in the rate of output rather than the

rate of output since in a continuous time model, the rate of output at time t

is una¤ected by the decision about whether to meet made at time t.

This completes the statement of the model. Dropping the time dependence

of variables to analyze dynamics, we obtain the following equations of motion.

_yi = _ni = [1� �ij] � � � ni + (10)

�ij � (� � [ncij � ndij � ndji]
1
3 + 
 � [ndji � ncij]

1
2 )

_ncij = �ij � (� � [ncij � ndij � ndji]
1
3 + 
 � [ndji � ncij]

1
2 + 
 � [ndij � ncji]

1
2 )

_ndij = [1� �ij] � � � ni � �ij � 
 � [ndij � ncji]
1
2

This system, with analogous equations for agent j, represents a partner dance

on the vertices of the Hilbert cube.

As we are attempting to model close interactions within small groups, we

assume that at each time, the myopic persons interacting choose a core con�g-

uration. That is, we restrict attention to con�gurations such that at any point

in time, no coalition of persons can get together and make themselves better

o¤ in that time period. In essence, our solution concept at a point in time is

the myopic core.

3 Equilibrium Dynamics: Two Persons

In order to analyze our system, we �rst divide all of our equations by the total

number of ideas possessed by i and j:

nij = ndij + n
d
ji + n

c
ij (11)

5We will see that the rule used in the case of ties is not important.
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and de�ne new variables

mc
ij � mc

ji =
ncij
nij

=
ncji
nij

md
ij =

ndij
nij
, md

ji =
ndji
nij

From (11), we obtain

1 = md
ij +m

d
ji +m

c
ij (12)

After some detailed calculations (see Appendix a of the technical appendix

for all of the steps), we obtain _md
ij and _md

ji as functions of m
d
ij and m

d
ji only,

as follows.

_md
ij = [1� �ij] � � � f(1�md

ij)(1�md
ij �md

ji)g (13)

��ij � f
 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

_md
ji = [1� �ij] � � � f(1�md

ji)(1�md
ij �md

ji)g
��ij � f
 � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3g

To study this more, we must study (9) further. Deleting time indices and

dividing by nij,

�ij = 1 ()
� � [mc

ij �md
ij �md

ji]
1
3 + 
 � [md

ji �mc
ij]

1
2 > � � (1�md

ji)

and � � [mc
ij �md

ji �md
ij]

1
3 + 
 � [md

ij �mc
ij]

1
2 > � � (1�md

ij)

Substituting further,

�ij = 1 ()
� � [(1�md

ji �md
ij) �md

ij �md
ji]

1
3 + 
 � [md

ji � (1�md
ji �md

ij)]
1
2 > � � (1�md

ji)

and � � [(1�md
ji�md

ij) �md
ji �md

ij]
1
3 +
 � [md

ij � (1�md
ji�md

ij)]
1
2 > � � (1�md

ij)

In other words, meetings occur when the rate of growth of income or utility of

each person is higher with a meeting than without a meeting.

De�ne

Fi(m
d
ij;m

d
ji) = � � [(1�md

ji �md
ij) �md

ij �md
ji]

1
3 + (14)


 � [md
ji � (1�md

ji �md
ij)]

1
2 � � � (1�md

ji)

Fj(m
d
ij;m

d
ji) = � � [(1�md

ji �md
ij) �md

ji �md
ij]

1
3 +


 � [md
ij � (1�md

ji �md
ij)]

1
2 � � � (1�md

ij)
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and

Mi = f(md
ij;m

d
ji) 2 R2+ j md

ij +m
d
ji � 1, Fi(md

ij;m
d
ji) > 0g (15)

Mj = f(md
ij;m

d
ji) 2 R2+ j md

ij +m
d
ji � 1, Fj(md

ij;m
d
ji) > 0g (16)

whereas

M =Mi \Mj

The function Fi(md
ij;m

d
ji) represents the net bene�t for i of meeting instead

of isolation. Likewise for Fj(md
ij;m

d
ji). The set Mi represents those pairs

(md
ij;m

d
ji) such that i wants to meet with j, since for these pairs, the rate of

growth of i�s utility or income with a meeting is higher than the rate of growth

of i�s utility or income without a meeting. The set Mj represents those pairs

(md
ij;m

d
ji) such that j wants to meet with i. Of course, the set M represents

those pairs (md
ij;m

d
ji) such that both persons want to meet with each other.

Thus, meetings will occur at time t for pairs in M .

We represent our model in our Figures as a function of md
ij and m

d
ji; since

md
ij + m

d
ji + m

c
ij = 1, we know that 1 � mc

ij = md
ij +m

d
ji � 1, where this

inequality is represented by half of the unit square (a triangle) in R2. We put
md
ij on the horizontal axis and m

d
ji on the vertical axis, omitting m

c.

Figure 1, panels (a) and (b) illustrate the sets Mi and Mj, respectively,

for � = 
 = 1 and for various values of �. Of course, panels (a) and (b)

are mirror images of each other across the 45� line. Figure 2 illustrates M ,

the set of pairs where both persons want to meet, and its complement, where

no meetings occur, for the same parameter values. When (md
ij;m

d
ji) is close

to the boundary of the triangle, meetings do not occur. The reason is that

the two persons have too little in common to interact e¤ectively (near the

diagonal) or someone has too little exclusive knowledge (near the axes) to

interact e¤ectively. Meetings only take place in the interior where the three

components of knowledge are relatively balanced.

FIGURES 1 AND 2 GO HERE

In fact we can describe the properties of the set M in general. The set M

has the shape depicted in Figure 2; see Appendix b of the technical appendix

for proof. In particular,M is roughly the shape of an apple core aligned on the

45� line. As � increases, the productivity of creating ideas alone increases, so

people are less likely to want to meet to create, implying that eachMi andMj

shrinks as � increases, as does M . If � is a little more than 1, M disappears.

To be precise, let M(�) be the set M under the parameter value �. Then,
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whenever �1 < �2, the set M(�2) is entirely contained in M(�1). Thus, as

shown in Figure 2, there is a unique point B contained in everyM(�), provided

M(�) is nonempty. We call B the bliss point, for the point B in Figure 2 is

the point where the rate of increase in income or utility is maximized for each

person, as we will explain in the next section (see also Lemma A6 in Appendix

c of the technical appendix).

Next we discuss the dynamics of the system. Consider �rst the case where

there is no meeting, so �ij = 0 is �xed exogenously. Then from equations (13),

the dynamics are given by the following equations:

_md
ij = � � (1�md

ij)(1�md
ij �md

ji)

_md
ji = � � (1�md

ji)(1�md
ij �md

ji)

FIGURE 3 GOES HERE

Figure 3, panel (a) illustrates the gradient �eld assuming that �ij = 0.

Several facts follow quickly from these derivations. First, if there is no meeting

(�ij = 0), then both _md
ij and _m

d
ji are non-negative, and positive on the interior

of the triangle. So if there is no meeting, the vector �eld points to the northeast.

Furthermore, in the lower half of the triangle where md
ij � md

ji (the other part

is symmetric), we have
_md
ji

_md
ij

=
1�md

ji

1�md
ij

� 1

where the inequality is strict o¤ of the diagonal. Thus, when �ij = 0, the

vector �eld points northeast but toward the diagonal. Under the assumption

of no meeting, the system tends to sink points along the diagonal line where

md
ij +m

d
ji = 1, illustrated in Figure 3, panel (a) by a line between (0; 1) and

(1; 0).

Figure 3, panel (b) illustrates the gradient �eld assuming that �ij = 1.

Then (13) implies:

_md
ij = �
 � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3

_md
ji = �
 � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3

(17)

Both of these expressions are negative on the interior of the triangle and the

vector �eld points southwest. Consider, for convenience, the lower half of the
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triangle where md
ij � md

ji; the other part is symmetric. Then

_md
ji

_md
ij

=

 � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3


 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3

� 1

where the inequality is strict o¤ of the diagonal. Thus, the vector �eld points

southwest but toward the diagonal, as illustrated in Figure 3, panel (b). The

only sink is at (0; 0), so the system eventually moves there under the assump-

tion of a meeting.

Next, we combine the case where there is no meeting (�ij = 0) with the

case where there is a meeting (�ij = 1), and let the agents choose whether or

not to meet. This is illustrated in Figure 4.

FIGURE 4 GOES HERE

The model follows the dynamics for meetings (�ij = 1) on M and the

dynamics for no meetings (�ij = 0) on the complement of M .

In general, there is a continuum of stable points of the system, correspond-

ing to the points where md
ij +m

d
ji = 1. For these points, eventually the myopic

return to no meeting dominates the returns to meetings, since eventually the

two persons have almost nothing in common. These stable points, however,

are not very interesting.

We have not completely speci�ed the dynamics. This is especially impor-

tant on the boundary of M , where at least one person is indi¤erent between

meeting and not meeting. We take an arbitrarily small unit of time, �t, and

assume that if at least one person becomes indi¤erent between meeting and

not meeting, but the two persons are currently meeting, then the meeting must

continue for at least �t units of time. Similarly, if the two persons are not

meeting when one person becomes indi¤erent between meeting and not meet-

ing while the other wants to meet or is indi¤erent, then they cannot meet for

at least �t units of time. So if a person becomes indi¤erent between meeting

or not meeting at time t, the function �ij(t) cannot change its value until time

t+�t. Finally, when at least one person initially happens to be on the bound-

ary of M (that is, at least one person is indi¤erent between meeting and not

meeting), then they cannot meet for at least �t units of time. Under this set

of rules, we can be more speci�c about the dynamic process near the boundary

of M .

In terms of dynamics, if the system does not evolve toward the uninteresting

stable points where there are no meetings (and the two people have nothing in
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common), eventually the system reaches the southwest boundary of the setM .

From there, the assumption that �ij is constant over time intervals of at least

length�t at the boundary ofM will drive the system in a zigzag process toward

the place furthest to the southwest and on the diagonal that is a member of

M . In other words, this is the point J = (md;md) 2 M with lowest norm. It

is the remaining stable point of our model. Small movements around J will

continue due to our assumption about the dynamics at the boundary of M ,

namely that meetings or isolation are sticky. As �t! 0, the process converges

to the point J . The point J features symmetry between the two agents with a

large degree of homogeneity relative to the remainder of the points in M and

the other points in the triangle generally.

So given various initial compositions of knowledge (md
ij;m

d
ji), where will the

system end up? If the initial composition of knowledge is relatively unbalanced,

in other words near the boundary of the triangle, the sink will be a point on

the diagonal where md
ij +m

d
ji = 1. If the initial composition of knowledge is

relatively balanced, then the sink will be the point J .

Using the facts about the shape of M , the point J exists and is unique as

long as M 6= ;.
At the point J = (mJ ;mJ), mJ � 2

5
, for reasons explained in the next

section.

Without loss of generality, we can allow �ij to take values in [0; 1] rather

than f0; 1g. The interpretation of a fractional �ij is that at each instant of
time, a person divides their time between a meeting �ij proportion of that

instant and isolation (1 � �ij) proportion of that instant. All of our results
concerning the model when �ij is restricted to f0; 1g carry over to the case
where �ij 2 [0; 1]. The reason is that except on the boundary of M , persons
strictly prefer �ij 2 f0; 1g to fractional values of �ij, as each person�s objective
function is linear in �ij. On the boundary of M , our rule concerning dynamics

prevents �ij from taking on fractional values, as it must retain its value from

the previous iteration of the process for at least time �t > 0. So if the process

pierces the boundary from inside M , it must retain �ij = 1 for an additional

time of at least �t. If it pierces the boundary from outside M , it must retain

�ij = 0 for an additional time of at least �t. It may seem trivial to allow

fractional �ij when discussing equilibrium behavior, but allowing fractional �ij
is crucial to the next section, where we consider e¢ ciency.
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4 E¢ ciency: Two persons

To construct an analog of Pareto e¢ ciency in this model, we use a social

planner who can choose whether or not people should meet in each time period.

As noted above, we shall allow the social planner to choose values of �ij in [0; 1],

so that persons can be required to meet for a percentage of the total time in a

period, and not meet for the remainder of the period. To avoid dependence of

our notion of e¢ ciency on a discount rate, we employ the following alternative

concepts. The �rst is stronger than the second. A path of �ij is a piecewise

continuous function of time (on [0;1)) taking values in [0; 1]. For each path
of �ij, there corresponds a unique time path of md

ij determined by equation

(13), respecting the initial condition, and thus a unique time path of income

yi(t; �ij). We say that a path �
0
ij (strictly) dominates a path �ij if

yi(t; �
0
ij) � yi(t; �ij) and yj(t; �0ij) � yj(t; �ij) for all t � 0

with strict inequality for at least one over a positive interval of time. As this

concept is quite strong, and thus di¢ cult to use as an e¢ ciency criterion, it

will sometimes be necessary to employ a weaker concept, which we discuss

next. We say that a path �ij is overtaken by a path �
0
ij if there exists a t

0 such

that

yi(t; �
0
ij) � yi(t; �ij) and yj(t; �0ij) � yj(t; �ij) for all t > t0

with strict inequality for at least one over a positive interval of time.

Two types of sink points were analyzed in the last section. First consider

equilibrium paths that have mJ as the sink point; they reach mJ in �nite time

and stay there. Using Figure 5, we will construct an alternative path �0ij that

dominates the equilibrium path �ij.

FIGURE 5 GOES HERE

In constructing this path, we will make use of income changes along the

upward sloping diagonal in Figure 4. Setting

md
ij = md

ji = m (18)

yi = yj = y

we use (10) and (11) to obtain
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_y(t)

y(t)
=

_y(t)

ni(t)
=

_y(t)

n(t)[1�m(t)] (19)

= [1� �ij(t)] � �+ �ij(t) � f� � [(1�
m(t)

1�m(t)) � (
m(t)

1�m(t))
2]

1
3

+
 � [(1� m(t)

1�m(t)) � (
m(t)

1�m(t))]
1
2 )g

To simplify notation, we de�ne the growth rate when the two persons meet,

�ij = 1, as

g(m) = � � [(1� m

1�m) � (
m

1�m)
2]

1
3 (20)

+
 � [(1� m

1�m) � (
m

1�m)]
1
2 )

Thus
_y(t)

y(t)
= [1� �ij] � �+ �ij � g(m) (21)

Figure 5 illustrates the graph of the function g(m) as a bold line for � =


 = 1. We can show6 that g(m) is strictly quasi-concave on [0; 1
2
], achieving

its maximal value at mB 2 [1
3
; 2
5
]. We can also show (see Lemma A6 of the

technical appendix) that m = mB corresponds to the bliss point B in Figure

2. In other words, whenever M 6= ;, B = (mB;mB) 2 M , so the point

J = (mJ ;mJ) de�ned in Figure 4 and in the previous section has the property

that mJ � 2=5, as it is de�ned to be the point in M on the diagonal and

closest to the origin. We de�ne the point I = (mI ;mI) in Figure 4 to be the

point in M on the diagonal and farthest from the origin.

Let t0 be the time at which the equilibrium path reaches (mJ ;mJ). Let the

planner set �0ij(t) = �ij(t) for t � t0, taking the same path as the equilibrium
path until t0. From this time on, the planner uses only symmetric points,

namely those on the upward sloping diagonal in Figure 4; these points comprise

the horizontal axis in Figure 5. At time t0, the planner takes �0ij(t) = 0 until

(mI ;mI) is attained, prohibiting meetings so that the dancers can pro�t from

ideas created in isolation. Then the planner sets �0ij(t) = 1 until (mJ ;mJ)

is attained, permitting meetings and the development of more knowledge in

common. The last two phases are repeated as necessary.

From Figure 5, the income paths yi(t; �
0
ij) and yj(t; �

0
ij) generated by the

path �0ij clearly dominates the income paths yi(t; �ij) and yj(t; �ij)generated by

6See Lemma A6 of the technical appendix.
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the equilibrium path �ij. Thus, the equilibrium is far from the most productive

path in the two person model.

Next consider equilibrium paths �ij(t) that end in sink points on the down-

ward sloping diagonal in Figure 4. Our dominance criterion cannot be used in

this situation, since in potentially dominating plans, the planner will need to

force the couple to meet outside of regionM in Figure 4 in early time periods.

During this time interval, the dancers could do better by not meeting, and thus

a comparison of the income derived from the paths would rely on the discount

rate, something we are trying to avoid. So we will use our weaker criterion

here, that of overtaking.

Given an equilibrium path �ij(t) with sink point on the diagonal, the plan-

ner can construct an overtaking path �0ij(t) as follows. The �rst phase is to

construct a path �0ij(t) that reaches a point in region M in �nite time. Such a

path can readily be constructed using Figures 3 and 4.7 After reaching region

M , the second and third phases are the same as described above for the con-

struction of a path that dominates one ending with mJ . Since the paths with

sinks on the downward sloping diagonal have income growth � at every time,

whereas the new path �0ij(t) features income growth that exceeds � whenever

the couple is meeting. Thus, �0ij(t) overtakes �ij(t).

The most productive state mB is characterized by less homogeneity than

the stable point mJ . Of course, attaining mB requires the social planner to

force the two persons not to meet some of the time. Otherwise, the system

evolves toward more homogeneity.

5 Equilibrium Dynamics: Four Persons

5.1 The General Framework

The model with only two people is very limited. Either two people are meeting

or they are each working in isolation. With four people, the dancers can be

partitioned into two sets of dance partners. Within each pair, the two dancers

are working together, but both pairs of partners are working simultaneously.

This creates more possibilities in our model, as the knowledge created within

7Such a path can be constructed as follows. In Figure 2 or Figure 4, take the union of

all closed, one dimensional intervals parallel to the 45� line with one endpoint on an axis

and the other endpoint a member of M . Call this set M 0. From time 0, take � = 1. Using

Figure 3(b), the path hits M 0 in �nite time. From this time on, take � = 0. Using Figure

3(a), the path hits M in �nite time.
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a dance pair is not known to the other pair. Thus, knowledge di¤erentiation

can evolve between the two pairs of dance partners. Furthermore, the option

of switching partners is available with four dancers, but not with two.

To begin the analysis, consider the case N = 4. This is a square dance

on the vertices of the Hilbert cube. We consider four people and impose

symmetry conditions to avoid messy technical issues that would be present

with three persons or without symmetry. Furthermore, to keep the analysis

tractable, we assume that there is no knowledge transfer during meetings or

dancing, so 
 = 0.8 That is, here we deal with the case in which the knowledge

at issue is so sticky that new ideas are kept forever by the creator (or by the

pair of joint creators) as a tacit knowledge.

At this point, it is useful to remind the reader that we are using a myopic

core concept to determine equilibrium at each point in time. In fact, it is

necessary to sharpen that concept in the model with 4 persons. When there

is more than one vector of strategies that is in the myopic core at a particular

time, namely more than one vector of joint strategies implies the same, highest

�rst derivative of income for all persons, the one with the highest second

derivative of income is selected. The justi�cation for this assumption is that

at each point in time, people are attempting to maximize the �ow of income.

The initial state of knowledge is symmetric among the four dancers, and

given by

ncij(0) = nc(0) for all i 6= j (22)

ndij(0) = nd(0) for all i 6= j (23)

At the initial state, each pair of dancers has the same number of ideas, nc(0),

in common. Moreover, for any pair of dancers, the number of ideas that one

dancer has but the other does not have is the same and equal to nd(0).

Next, we examine possible equilibrium con�gurations, noting that the equi-

librium con�guration can vary with time. Figure 6 gives the possibilities at

any given time. Given that the initial state of knowledge is symmetric among

the four dancers, it turns out that the equilibrium con�guration at any time

also maintains the basic symmetry among the dancers.

FIGURE 6 GOES HERE
8Qualitatively, all of the results of the previous sections (assuming that N = 2) hold if


 = 0 and � > 0, for the following reason. As 
 tends to zero, in Figure 5, mB tends to

2=5 from the left, but the general shape of g(m) remains the same. This observation will

be useful for making comparisons of the results for four dancers with the results for two

dancers.
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Panel (a) in Figure 6 represents the case in which each of the four dancers is

working alone, creating new ideas in isolation. Panels (b-1) to (b-3) represent

the three possible con�gurations of partner dancing, in which two couples each

dance separately but simultaneously. In panel (b-1), for example, 1 and 2 dance

together. At the same time, 3 and 4 dance together.

Although panels (a) to (b-3) represent the basic forms of dance with four

persons, it turns out that the equilibrium path often requires a mixture of these

basic forms. That is, on the equilibrium path, people wish to change partners

as frequently as possible. The purpose is to balance the number of di¤erent

and common ideas with partners as best as can be achieved. This suggests a

square dance with rapidly changing partners on the equilibrium path.

Please refer to panels (c-1) to (c-3) in Figure 6. Each of these panels

represents square dancing where a dancer rotates through two �xed partners

as fast as possible in order to maximize the instantaneous increase in their

income. In panel (c-1), for example, dancer 1 chooses dancers 2 and 3 as

partners, and rotates between the two partners under equilibrium values of �12
and �13 such that �12 + �13 = 1. Dancers 2, 3 and 4 behave analogously. In

order for this type of square dance to take place, of course, all four persons

must agree to follow this pattern.9 Finally, panel (d) depicts square dancing in

which each dancer rotates though all three possible partners as fast as possible.

That is, for all i 6= j, �ij 2 (0; 1), and for all i, �ii = 0 and
P

j 6=i �ij = 1.

To identify which form of square dancing will take place on the equilibrium

path, we derive several preliminary expressions. Analogous to (7) for the two-

person case, we de�ne the size of knowledge for person i at time t to be ni(t)

and the income for person i at time t to be yi(t) = ni(t). Given any pair of

persons, i and j, let ncij(t) be the number of ideas that are possessed by both i

and j at time t, let ndij(t) be the number of ideas that person i has but person

j does not have at time t, and let ndji(t) be the number of ideas which person

j has but person i does not have at time t. Then, it holds by de�nition that

ni(t) = n
c
ij(t) + n

d
ij(t) (24)

De�ne nij(t) be the total number of ideas possessed by persons i and j together

at time t. Then, tautologically

nij(t) = ncij(t) + n
d
ij(t) + n

d
ji(t) (25)

9In square dancing terminology, this is the �call.�
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Similar to notation used in the previous sections, de�ne

mc
ij(t) =

ncij(t)

nij(t)
, md

ij(t) =
ndij(t)

nij(t)
(26)

Next, let �ij(t) represent the meeting index for dancers i and j at time t, where

�ij(t) = 1 means that person i dances exclusively with j at time t, �ij(t) = 0

means that i and j are not meeting at time t, whereas 0 < �ij(t) < 1 means

that person i dances with j at time t for the fraction of time �ij(t).10

Let us focus on the payo¤s and decisions of any dancer, say i. Setting �ij = 0

in (10), we de�ne the increase in income when person i is dancing in isolation

as follows:

_yi(t) = �ni(t) when i works alone. (27)

Likewise, setting 
 = 0 and �ij(t) = 1 in (10), we de�ne the increase in income

when dancer i is paired exclusively with dancer j 6= i at time t as

_yiji (t) = _ni(t) = � �
�
ncij(t) � ndij(t) � ndji(t)

�1=3
when �ij(t) = 1 (28)

In general, when �ij(t) takes positive values for more than one j, namely when

person i is dancing with more than one partner, the instantaneous increase in

income of dancer i at time t is de�ned as

_yi(t) = _ni(t) =
X
j 6=i

�ij(t) � _yiji (t)

=
X
j 6=i

�ij(t) � � �
�
ncij(t) � ndij(t) � ndji(t)

�1=3 (29)

At each time t, person i wants to maximize the instantaneous rate of increase

in income. Hence, given two potential partners, j and k, by identifying the

sign of the di¤erence in the change in income

_yiji (t)� _yiki (t), (30)

we can identify whether person i prefers j or k as a partner at time t. Since

income yi(t) = ni(t) at time t is a positive number at time t, the sign of (30)

is the same as the sign of

_yiji (t)� _yiki (t)

yi(t)
� _yiji (t)

yi(t)
� _yiki
yi(t)

(31)

10Hereafter, we assume that for each pair i and j, �ij(t) is a piecewise continuous function

of time, taking values in [0; 1].
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In general, the identi�cation of this sign is not easy. However, in a special

case which is relevant to our analysis, this task becomes easier. Suppose that

the knowledge composition of i and j is symmetric at time t:

ndij(t) = n
d
ji(t) (32)

That is, at time t, persons i and j have the same number of exclusive ideas.

Equations (25) and (32) together imply

1 = mc
ij(t) + 2m

d
ij(t) (33)

Since yi(t) = ni(t), using (24), (25) and (32) yields

yi(t) = ncij(t) + n
d
ij(t)

= nij(t)� ndij(t)
= nij(t) �

�
1�md

ij(t)
�

(34)

Furthermore, substituting (32) into (28) gives

_yiji (t) = � �
�
ncij(t) � ndij(t)2

�1=3
when �ij(t) = 1 (35)

So, when �ij(t) = 1, equations (33) to (35) yield

_yiji (t)

yi(t)
=

� �
�
ncij(t) � ndij(t)2

�1=3
nij(t) �

�
1�md

ij(t)
�

=
� �
�
mc
ij(t) �md

ij(t)
2
�1=3

1�md
ij(t)

=
� �
��
1� 2md

ij(t)
�
�md

ij(t)
2
�1=3

1�md
ij(t)

= �

24 1� md
ij(t)

1�md
ij(t)

!
�
 

md
ij(t)

1�md
ij(t)

!2351=3

Since we assume 
 = 0 in this section, setting 
 = 0 in the de�nition (20) of

g, we know

g(m) � �
"�
1� m

1�m

��
m

1�m

�2#1=3
(36)

Thus
_yiji (t)

yi(t)
= g(md

ij(t)) (37)

The g(m) curve de�ned by (36) is depicted in Figure 7 with � = 1. The bliss

point is at mB = 2=5.
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FIGURE 7 GOES HERE

Similarly, suppose that the knowledge bases of persons i and k are pairwise-

symmetric at time t:

ndik(t) = n
d
ki(t) (38)

Then de�ning

md
ik(t) �

ndik(t)

nik(t)
, mc

ik(t) �
ncik(t)

nik(t)

we can show that when �ik(t) = 1,

_yiki (t)

yi(t)
= g

�
md
ik(t)

�
(39)

Suppose that all four dancers are pairwise symmetric at time t, so condition

(32) holds for all pairs (i; j) where i; j = 1; � � � ; 4 (i 6= j). Then, by using the
g(m) curve depicted in Figure 7, we can identify the best partner (or partners)

for each person at time t. If person i dances alone at time t, the rate of income

increase is given by (27) as

_yi(t)

yi(t)
=
_yi(t)

ni(t)
= � (40)

Thus, if

� > max
k 6=i

g(md
ik(t)) (41)

then person i will choose to dance alone at time t. So when conditions (32)

and (40) both hold at time t, equation (31) reduces to

_yiji (t)� _yiki (t)

yi(t)
= g(md

ij(t))� g(md
ik(t)) (42)

If this expression is positive, then person i prefers j to k as his or her partner

at time t. Hence, a necessary and su¢ cient condition for person i to choose j

as a best partner at time t (or one of the best partners for a mixed dance) is:

g(md
ij(t)) = max

�
max
k 6=i

g
�
md
ik(t)

�
; �

�
(43)

Furthermore, for i and j to dance as partners at time t, of course, condition

(43) must hold when the roles of i and j are switched in the expression. We

will show below that such a reciprocal relation holds always on the equilibrium

path starting with the symmetric initial conditions (22) and (23).
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Now we are ready to investigate the actual equilibrium path, depending on

the given initial composition of knowledge,

md
ij(0) = m

d(0) =
nd(0)

nc(0) + 2nd(0)

which is common for all pairs i and j (i 6= j). In Figure 7, let mJ and mI be

de�ned on the horizontal axis at the left intersection and the right intersection

between the g(m) curve and the horizontal line at height �, respectively.

5.2 The Main Result

In the remainder of this paper, we assume that

� < g(mB) (44)

so as to avoid the trivial case of all agents always working in isolation.

Figure 8 provides a diagram explaining our main result.

FIGURE 8 GOES HERE

The top horizontal line represents the initial common state md(0), while

the bottom horizontal line represents the �nal common state or sink point,

md(1). There are four regions of the initial state that result in four di¤erent
sink points. To be precise:11

The Main Result: The equilibrium path and sink point depend discon-

tinuously on the initial condition, namely the initial value of the proportion

of ideas held by each person but nobody else, md(0), that is assumed to be the

same for all agents.12 The pattern of interaction between persons and the sink

point as a function of the initial condition are given in Figure 8 and as follows.

(i) For 0 � md(0) � 2=5 = mB, the equilibrium path consists of an initial

time interval (possibly the empty set) in which all four persons work inde-

pendently (form (a)), followed by an interval in which all persons work with

11At this point, it is useful to recall the following notation. In any symmetric situation, the

percentage of ideas known by one agent but not another is given by mJ for the lowest value

at which meetings are desirable, mI for the highest value at which meetings are desirable,

and mB for the bliss point or the maximal productivity of a meeting.
12To be precise, we also assume that the initial values of the number of ideas held com-

monly by each pair of agents are the same, and the number of ideas that an agent holds but

another agent does not hold are the same for all pairs of agents. The precise statement of

these assumptions can be found in (22) and (23).
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another but trade partners as rapidly as possible (form (d) with �ij = 1
3
for all

i and for all j 6= i). The sink point is the bliss point, 2=5.
(ii) There exists a certain bm with mB < bm < mI , such that when mB <

md(0) � bm, the equilibrium path consists of three phases. First, the four per-

sons are paired arbitrarily and work with their partners (form (b-1)). Second,

they switch to new partners and work with their new partners for a nonempty

interval of time (form (b-2)). Finally, each person works alternately with part-

ners with whom they worked in the �rst two phases, but not with the person

with whom they have not worked previously (form (c-1)). The sink point is

1=3.13

(iii) For bm < md(0) � mI , the equilibrium path pairs the 4 persons into two

couples arbitrarily, and each person dances exclusively with the same partner

forever (form (b-1)). The sink point is mJ .

(iv) For mI < md(0) � 1=2, each person dances alone forever (form (a)).

The sink point is 1=2.

5.2.1 Case (i): 0 < md(0) � 2=5 = mB

First suppose that the initial state is such that

mJ � md(0) � mB

Then, since g(md
ij(0)) = g

�
md(0)

�
> � for any possible dance pairs of i and

j, no person wishes to dance alone at the start. However, since the value of

g(md
ij(0)) is the same for all possible pairs, all forms of (b-1) to (d) in Figure 6

are possible equilibrium dance con�gurations at the start. To determine which

one of them will actually take place on the equilibrium path, we must consider

the dynamics of dancing immediately after the start. We can demonstrate the

following (see Appendix 1 for proof).

Lemma 1: Under the symmetry assumptions on initial conditions for four
persons, suppose that mJ < md(0) < 2=5. If all persons have partners at time

0, then person 1 prefers (and thus all four persons prefer) to change partners

immediately (form (d) with �ij = 1
3
for all i and for all j 6= i).

The intuition behind this result is as follows. The conditionmd(0) < 2=5(=

mB) means that the four dancers have relatively too many ideas in common

initially, and thus they wish to have partners who have relatively more ideas

that are di¤erent from theirs. When dancing starts in the form of panel (b-1)

in Figure 6, dancers 1 and 2 are producing more common ideas; in contrast,

13Here we are assuming that g(1=3) > �. If g(1=3) � �, then the sink point is mJ .
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from the view point of dancers 1 and 2, dancers 3 and 4 are accumulating new

ideas that are di¤erent from theirs. In fact, let �nc12(t) be the number of ideas

created by the partnership of 1 and 2 from time 0 to time t given by (72).

Di¤erentiating (74) and (77) we obtain

_md
12(t) = �

nd(0)

[nc(0) + �nc12(t) + 2n
d(0)]2

��_nc12(t) < 0 (45)

_md
13(t) =

nc(0)

(nc(0) + 2 [nd(0) + �nc12(t)])
2 ��_n

c
12(t) > 0 (46)

where, from equation (79),

�_nc12(t) = �

�
nc(0)2=3 +

2

3
�nd(0)2=3t

�1=2
nd(0)2=3 > 0

From (45) we can see that the proportion of ideas that are not common for

partners 1 and 2 is decreasing with time, while the proportion of ideas that

are not common for partners 1 and 3 is increasing with time. Since g is

monotonically increasing on the domain (mJ ; 2=5) (see Figure 7), the value

g(md
12(t)) of the dance partnership f1; 2g is decreasing with time, while the

value g
�
md
13(t)

�
of the dance partnership f1; 3g is increasing with time. Hence,

given the symmetric situation of the four dancers, everyone wants to change

partners immediately.

Lemma 1 implies that when mJ < md(0) < 2=5, people wish to change

partners as frequently as possible. This suggests, on the equilibrium path,

a square dance with rapidly changing partners represented by one of panels

(c-1) to (d) in Figure 6 at the start. Actually, we can show that the square

dance con�gurations (c-1) to (c-3) cannot occur on the equilibrium path. For

example, suppose that the dancing in the form of panel (c-1) occurs at the

start, where �12 = �13 = 1=2, �14 = 0 and so forth. Then, analogous to (78),

we can show that for any su¢ ciently small t > 0,

md
14(t) > m

d
12(t) = m

d
13(t)

and hence g
�
md
14(t)

�
> g

�
md
12(t)

�
= g

�
md
13(t)

�
for any su¢ ciently small t > 0.

Thus, dancer 1 wants to change partners from 2 and 3 to 4 immediately. The

intuition behind this result is the same as that behind Lemma 1.

Therefore, when mJ < md(0) < 2=5(= mB), on the equilibrium path, only

con�guration (d) in Figure 6 can take place at the start, where �ij = 1=3 for

all i 6= j. The dynamics for this square dance are as follows. The creation of
new ideas always takes place in pairs. Pairs are cycling rapidly (form (d) with
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�ij =
1
3
for all i and for all j 6= i). Dancer 1 spends 1

3
of each period with

dancer 2, and 2
3
of the time dancing with other partners. Given the symmetric

initial conditions and the symmetry of the equilibrium path, the number of

common ideas are the same for every pair of dancers.

Omitting the time index, we de�ne

nc = ncij for all i 6= j.

Similarly, the number of ideas not held in common are the same for every pair

of dancers:

nd = ndij for all i 6= j.
Therefore the total number of ideas for any pair of partners is given by

n = nc + 2nd (47)

So the dynamics of the system are described as follows.

_nc =
1

3
� � [nc � (nd)2] 13

_nd =
2

3
� � [nc � (nd)2] 13

De�ning

mc =
nc

n
, md =

nd

n
we can use (47) to obtain

_md =
d(n

d

n
)

dt
=
_nd

n
� n

d

n
� _n
n

(48)

=
2

3
� � [(1� 2md) � (md)2]

1
3 �md � _n

n

_n

n
=

_nc

n
+
2 _nd

n

=
5

3
� � � [(1� 2md) � (md)2]

1
3

so

_md =
2� 5md

3
� � � [(1� 2md) � (md)2]

1
3 (49)

This expression is positive when md < mB = 2=5, and zero if md = 2=5.

Hence, beginning at any point md(0) < 2=5, the system moves to the right,

eventually settling at the bliss point B.

When 0 � md(0) < mJ , it is obvious that the four persons work alone

until they reach mJ .14 Then they follow the path explained above, eventually

reaching mB.
14Movement to the right beyond mJ requires application of the second order conditions

for equilibrium selection.
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5.2.2 Case (ii): mB < md(0) � bm 15

Next, let us consider the dynamics of the system when it begins to the

right ofmB = 2=5 (but to the left of bm, which will be de�ned soon), for example
at md

0 in Figure 9, where the g(m) curve from Figure 7 is duplicated in the top

part. In other words, the initial state re�ects a higher degree of heterogeneity

than the bliss point, so the dancers want to increase the knowledge they have

in common through couple dances.16 Suppose that the four persons initiate

pairwise dancing, for example in form (b-1) of Figure 6. Then, as in Case (i),

md
12(t) and m

d
13(t) are given by (74) and (77), respectively. Thus, as shown in

(45) and (46), we have _md
12 < 0 and _md

13 > 0 at such points in the domain,

and g(m) is downward sloping in this part of the domain. Thus, the value of

retaining the dance partnerships f1; 2g and f3; 4g is higher than the value of
switching partners to, for example, f1; 3g and f2; 4g, so the original pairs will
continue to dance for at least a short while. This contrasts with the behavior

of the system when mJ < md < 2=5.

FIGURE 9 GOES HERE

To see if the pairs continue to be stable or if they eventually switch partners,

we calculate the relative speeds of _md
12 and _md

13. For person 1, m
d
12 is the

knowledge di¤erential when they are paired with their current partner, person

2, whilemd
13 is the knowledge di¤erential when they are paired with a potential

partner, person 3. We refer to g(md
13) as the �shadow value�of the potential

partnership between persons 1 and 3.

Taking the ratio of (46) to (45),

_md
13(t)

_md
12(t)

= �n
c(0)

nd(0)
[1� �nc12(t)

nc(0) + 2[nd(0) + �nc12(t)]
]2 (50)

Using (74), and setting �nc12(0) = 0,

md(0) =
nd(0)

nc(0) + 2nd(0)

Hence

md(0) >
2

5
if and only if

nc(0)

nd(0)
<
1

2
.

15Please note that we have not yet de�ned bm. It will appear soon.
16In fact, dancing forms (b-1), (c-1) and (d) are all possible �rst dances from these initial

conditions. They all have the same _y. After some calculations, we will show in the next

footnote that indeed pattern (b-1) features the highest d2y=dt2.
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So from (50)

� _md
13(t)

_md
12(t)

<
1

2
when md

12(0) >
2

5

The important implication is that md
12(t) is decreasing at a rate at least twice

the speed of increase ofmd
13(t). Provided thatm

d(0) is su¢ ciently close to 2=5,

eventually there will be a time t0 such that g(md
12(t

0)) = g(md
13(t

0)) and partners

change from f1; 2g and f3; 4g to, for example, f1; 3g and f2; 4g. The intuition
is that initially md(0) > 2=5, so there are few common ideas within initial

ideas partnerships. In the partnership f1; 2g, for instance, a common idea
base is built for the initial time interval beginning at time 0, and productivity

increases. This can be seen in Figure 9 as a move by the partnership f1; 2g
left from md

0. When common ideas become too numerous (or m decreases

beyond mB), productivity decreases. These dynamics occur quickly relative

to the dynamics for shadow partnership f1; 3g. But the shadow value of the
partnership f1; 3g must also be considered. Since dancers 1 and 3 are not

partners, md
13(t) is increasing, and thus g(m

d
13(t)) is decreasing. Its value is

decreasing slowly relative to the dynamics for the partnership f1; 2g, as the
percentage of ideas in common between persons 1 and 3 declines. Eventually,

the values of the two partnerships coincide, and the dancers switch partners.

Indeed, we can show the following (see Appendix 2 for the proof):

Lemma 2: Assuming symmetry of initial conditions for four persons, sup-
pose that 2=5 < md(0) < 1=2. If they form partnerships f1; 2g and f3; 4g
initially, and keep the same partnerships, then there exists a time t0 such that

for t > 0,

g(md
12(t))

>

<
g(md

13(t)) as t
<

>
t0 (51)

and the following relationship holds at time t0:

md
13(t

0) =
2

5
+

�
md(0)� 2

5

� �
1�md(0)

�
md(0)2

h
2�

�
1

md(0)
� 2
��
4� 1

md(0)

�i (52)

By symmetry, similar relationships hold for other combinations of actual

and shadow partners. We can readily see from (52) that

md
13(t

0) > md(0) for
2

5
< md(0) <

1

2
(53)

and md
13(t

0) increases continuously from 2=5 to 1=2 as md(0) moves from 2=5

to 1=2. Furthermore, we can see by (77) and (79) that the value of md
13(t)

increases continuously from md(0) to 1=2 as t increases from 0 to 1. Hence,
equation (52) de�nes uniquely the switching time t0 as a function of md(0),
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which is denoted by ts
�
md(0)

�
. By construction, ts is an increasing function

of md(0) such that

ts [2=5] = 0 and lim
md(0)!1=2

ts
�
md(0)

�
=1

Setting t0 = ts
�
md(0)

�
in (51) and (52), and denoting

md
12

�
ts
�
md(0)

��
� md

12

�
md(0)

�
, md

13

�
ts
�
md(0)

��
� md

13

�
md(0)

�
we have that

g
�
md
12

�
md(0)

��
= g

�
md
13

�
md(0)

��
(54)

and

md
13

�
md(0)

�
=
2

5
+

�
md(0)� 2

5

� �
1�md(0)

�
md(0)2

h
2�

�
1

md(0)
� 2
��
4� 1

md(0)

�i (55)

which de�nes the positions of the initial partnerships at which switching occurs.

In Figure 9, we draw the md
13

�
md(0)

�
curve in the bottom part (with the bold

line). For an illustration, we take md
0 as the initial value of m

d(0), and using

the real lines with arrows, we show how to determine the switching positions

md
13

�
md
0

�
and md

12

�
md
0

�
.

Let m̂ be the critical value of md(0) such that

md
13 [m̂] = m

I (56)

Using Figure 9, we can readily show that 2=5 < m̂ < mI . Suppose that

2=5 < md(0) � bm. Then, under the partnership f1; 2g and f3; 4g, it holds
that

g
�
md
12(t)

�
> g

�
md
13(t)

�
> � for 0 < t < t0

and hence partnerships f1; 2g and f3; 4g continue until time t0. However, if
they maintained the same partnerships longer, then

g
�
md
12(t)

�
< g

�
md
13(t)

�
for t > t0

This implies that the original partnership cannot be continued beyond time t0,

and that the dancers switch to the new partnerships, say f1; 3g and f2; 4g, at
time t0, where

g
�
md
12(t

0)
�
= g

�
md
13(t

0)
�

(57)

These new partnerships last only for a limited time. Indeed, we can show

the following (see Appendix 3 for the proof):
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Lemma 3: In the context of Lemma 2, suppose that the initial partnerships
f1; 2g and f3; 4g switch to the new partnerships f1; 3g and f2; 4g at time t0

where

g
�
md
12(t

0)
�
= g(md

13(t
0))

and

md
12(t

0) = md
34(t

0) < mB < md
13(t

0) = md
14(t

0) (58)

Assuming that the new partnerships are kept after time t0, let t00 be the time

at which md
12(t) and m

d
13(t) become the same:

md
12(t

00) = md
13(t

00) (59)

Then, it holds for t > t0,

g
�
md
12(t)

� <
>
g(md

13(t)) as t
<

>
t00 (60)

and

g
�
md
13(t)

�
> g(md

14(t)) for t0 < t � t00 (61)

Hence, indeed, the new partnerships f1; 3g and f2; 4g formed at time t0 can be
sustained until time t00. This second switching-time, t00, is uniquely determined

by solving the following relationship:

�nc13(t
0; t00) = nd13(t

0)� nd12(t0) � �nc12(t0) (62)

where �nc13(t
0; t) is the number of ideas created under the partnership f1; 3g

from time t0 to time t � t0, which is given by (86). The position where md
12(t)

meets md
13(t) is given by

md
12(t

00) = md
13(t

00) =
2

5
�
md(0)� 2

5

5md(0)� 1 (63)

By symmetry, similar relationships hold for other combinations of actual

and shadow partners. In particular, it holds that

md
12(t

00) = md
13(t

00) = md
34(t

00) = md
24(t

00) � md(t00) (64)

Referring to the proof of Lemma 3 contained in Appendix 3, since equations

(86) and (90) together imply that the value of md
13(t) decreases continuously

frommd
13(t

0) >md(0) to 0 as t increases from t0 to1, and since by equation (52)
md
13(t

0) is a function only of md(0), equation (63) de�nes uniquely the time t00
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as a function of md(0), which is denoted by ~ts
�
md(0)

�
. Setting t00 = ~ts

�
md(0)

�
in (64), we denote

~md
�
md(0)

�
� md

12

�
~ts
�
md(0)

��
= md

13

�
~ts
�
md(0)

��
= md

34

�
~ts
�
md(0)

��
= md

24

�
~ts
�
md(0)

��
(65)

where, using (63), ~md
�
md(0)

�
is de�ned as follows:

~md
�
md(0)

�
=
2

5
�
md(0)� 2

5

5md(0)� 1 (66)

which represents the position of the second partnerships at which switching

occurs.

In Figure 9, the ~md
�
md(0)

�
curve is drawn in the bottom part by a bold,

broken line. And, takingmd
0 as the initial value of m

d(0), and using the broken

lines with arrows, we demonstrate how to determine the second switching po-

sition ~md
�
md(0)

�
. It follows from (63) that the value of ~md

�
md(0)

�
decreases

continuously, where

~md

�
2

5

�
=
2

5
> ~md

�
md(0)

�
>
1

3
= ~md

�
1

2

�
for

2

5
< md(0) <

1

2

If partnerships f1; 3g and f2; 4g were maintained beyond time t00, then it
would follow from (60) that

g
�
md
12(t)

�
> g

�
md
13(t)

�
for t > t00 (67)

This implies that the same partnerships cannot be continued beyond t00. To see

what form of dancing will take place after t00, �rst note that dancers cannot

go back to the previous form of partnerships f1; 2g and f3; 4g. If they did
so, then the proportion of the knowledge in common for the actual partners

f1; 2g would increase, while the proportion of the di¤erential knowledge for
the shadow partnership f3; 4g would increase. This means that the following
relationship,

md
12(t) < m

d(t00) < md
13(t) < m

B

holds immediately after t00, and thus

g
�
md
12(t)

�
< g

�
md
13(t)

�
(68)

which contradicts with the assumption that f1; 2g is the actual partnership.
Furthermore, relation (61) implies that under any possible partnership, the

following inequality

g
�
md
13(t)

�
> g

�
md
14(t)

�
(69)
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holds immediately after t00. Thus, immediately after time t00, equilibrium

dancing cannot include partnerships f1; 4g and f2; 3g. Hence, provided that
g(1=3) > �, we can see from Figure 6 that the only possible equilibrium con�g-

uration immediately after t00 is the square dance in the form of (c-1), involving

a rapid rotation of non-diagonal partnerships, f1; 2g, f1; 3g, f2; 4g and f3; 4g.
That is, for dancer 1, �11 = 0 and �1j = 1

2
if j = 2 or 3, �14 = 0. Analogous

expressions hold for the other dancers. Indeed, as shown below, this form of

dancing will continue on the equilibrium path forever after t00.

The dynamics for this square dance are as follows. Using (62) together

with relations (88) through (92), and by symmetry, we obtain the following

initial conditions at time t00:

ncij(t
00) = ncji(t

00) = nc(0) + �nc12(t
0) � nc(t00)

for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)

ndij(t
00) = ndji(t

00) = nd(0) + �nc12(t
0) � nd(t00)

for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)
which are symmetric for all pairs of non-diagonal dancers. Starting with this

symmetric state, dancer 1, for example, spends 1=2 of each period with dancers

2 and 3, respectively. Given the symmetric initial conditions at t00 and the sym-

metry of the equilibrium path, the number of common ideas and the number

of uncommon ideas are respectively the same for every pair of non-diagonal

dancers.

Omitting the time index, we de�ne

nc = ncij = n
c
ji for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)

nd = ndij = n
d
ji for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)

and hence the total number of ideas for any pair of non-diagonal partners is

given by

n = nc + 2nd

So, setting

�ij = �ji =
1

2
for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)

the dynamics of the system are given by

_nc = _nd =
1

2
� �
h
nc �

�
nd
�2i1=3
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De�ne

mc =
nc

n
;md =

nd

n
Then, analogous to the derivation of (49), we can obtain

_md =
1� 3md

2
� � �

h�
1� 2md

�
�
�
md
�2i1=3

(70)

which is negative when md > 1
3
, and zero if md = 1

3
. Thus, beginning at any

pointmd(t00) > 1
3
, the system moves to the left, eventually settling atmd = 1

3
.17

We can readily show that, along the path above, relation (69) holds for all

t � t00 where md
13(t) � md(t). Hence, starting at time t00, no dancer wishes to

deviate from the square dance in the form of (c-1) in Figure 6. Thus, we can

conclude as follows:

Lemma 4: In the context of Lemmas 2 and 3, let t00 be the time de�ned
by the relation (62). At this time, the partnerships f1; 3g and f2; 4g, which
started at t0 by switching from the initial partnerships f1; 2g and f3; 4g, reach
the symmetric state such that

md
ij(t

00) = md
ji(t

00) = md
12(t

00) for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3),

where 1=3 < md
12(t

00) < mB. Then, the four persons together start the square

dance in the form (c-1) of Figure 6 where �ij = �ji = 1=2 for all i 6= j,

(i; j) 6= (1; 4) 6= (2; 3). This square dance continues forever after time t00,

while maintaining the symmetric state such that

md
ij(t) = m

d
ji(t) � md(t) for all i 6= j; (i; j) 6= (1; 4); (i; j) 6= (2; 3)

and eventually md(t) reaches 1=3.

It is interesting to observe that, in the entire equilibrium process starting

with the symmetric state of knowledge such that md
i (0) = m

d(0) > mB for all

17At this point, we have enough machinery to demonstrate that pattern (b-1) is chosen

as the �rst dance, as promised at the beginning of this Case and in the previous footnote.

The dynamics for the three con�gurations (b-1), (c-1), and (d) are given by the following

equations, respectively. For con�guration (b-1), analogous to the derivation of (49), we can

obtain:

_md
12 = �md

12(1�md
12)g(m

d
12).

For con�guration (c-1), see equation (70) . For con�guration (d), see equation (49). Note

that at time 0, md
12(0) = md(0). Substituting and comparing these equations, we �nd

that con�guration (b-1) generates the highest value of � _md(0) and thus the highest value

of dg(m
d(0))
dt = g0(md(0)) � _md(0) (for g0(md(0)) < 0). So con�guation (b-1) generates the

highest value of d( _y=y)dt = dg(md(0))
dt . Note that d( _y=y)dt = d2y=dt2

y � g(md(0))2, so con�guration

(b-1) also generates the highest value of d2y=dt2.
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i, partnerships f1; 4g and f2; 3g never coalesce. That is, given that the pro-
portion of di¤erential knowledge for all pairs of dancers at the start exceeds

the most productive point mB, they try to increase the proportion of knowl-

edge in common as quickly as possible through partner dancing. This initial

stages of building up knowledge in common through partner dancing, how-

ever, divides all possible pairs of partners, who were symmetric at the start,

into two heterogenous groups: those pairs that developed a su¢ cient propor-

tion of knowledge in common through actual meetings, and those pairs that

increased further the proportion of exclusive knowledge because they did not

have a chance to work together. Since the latter group of potential partners

is excluded from the square dance in the last stage, the equilibrium process of

the four-person system ends up with a state of knowledge that is less than the

most productive.

5.2.3 Case (iii): bm < md(0) � mI

Next supposemd(0) is such that m̂ < md(0) � mI . As in Case (ii), dancers are

more heterogeneous than at the bliss point, so they would like to increase the

knowledge they hold in common through couple dancing, for example using

con�guration (b-1) in Figure 6. The initial phase of Case (iii) is the same as the

initial phase of Case (ii). However, using (55), we know that md
13[m

d(0)] > mI .

Thus, g
�
md
12(t)

�
> g

�
md
13(t)

�
for all t before md

12(t) reaches m
J , whereas

g
�
md
12(t)

�
> � > g

�
md
13(t)

�
when md

12(t) reaches m
J . So each dancer keeps

their original partner as the system climbs up to B and on to J . When the

system reaches md(t) = mJ , each dancer uses fractional �ij to attain mJ by

switching between working in isolation and dancing with their original partner.

5.2.4 Case (iv): mI < md(0) � 1=2

Finally, suppose md(0) > mI . Then, g
�
md(0)

�
< �, and hence there is no

chance for four persons to make any partnership. Thus, each dances in solo

forever, and eventually reaches md = 1=2.

Compiling all four cases, the Main Result follows.

There are several important remarks to be made about our Main Result.

First, the sink point changes discontinuously with changes in the initial con-

ditions. Second, unlike the model with two persons, the sink point is e¢ cient

for a large set of initial conditions. Third, from one set of initial conditions

(Case (iii)), the four persons divide into two separate groups between which
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no interaction occurs. Thus, from an initial state that is symmetric, we obtain

an equilibrium path with an asymmetry.

5.3 E¢ ciency: Four Persons

Finally, we consider the welfare properties of the equilibrium path. We examine

each of the cases enumerated above, beginning with Case (iii). This Case is

quite analogous to the two person model with sink point mJ , and essentially

the same argument implies that the equilibrium path can be dominated. What

distinguishes this case is the fact that at the sink point, meeting and not

meeting have the same one period payo¤ for all persons, namely the percentage

change in income. Thus, the social planner can change �ij for a length of time

without changing payo¤s, but after this length of time, payo¤s can be made

higher, as illustrated in Section 4.

Next consider Case (iv). The equilibrium cannot be dominated. It has

each person always working in isolation. Thus, md(0) lies in (mI ; 1
2
] and md

moves right with time. If there were a dominating path, then the social planner

must force some pair to work together over a non-trivial interval of time. The

�rst such interval of time will have values of md in (mI ; 1
2
], so the persons

working together will have lower income during this interval, contradicting the

assumption of domination.

Consider Case (i). Let �ij(t) be the equilibrium path. When md(0) > mJ ,

�ij(t) = 1=3 for all t and for all pairs i and j, and the payo¤s from meeting

always exceed not meeting for any person. We show in Appendix d of the

technical appendix that this is the unique path of meetings that maximizes

the income over each non-negligible interval of time. So the equilibrium path

is not dominated by any other feasible path. Furthermore, the equilibrium

path approaches the most productive state, mB. When md(0) � mJ , similar

to Case (iv), strict domination cannot occur when md � mJ . The equilibrium

path begins at md(0) and reaches mJ in �nite time. Combining this with what

we have determined about the equilibrium path starting at md(0) > mJ , we

obtain that the equilibrium path is not dominated, and approaches the most

productive state.

Finally, consider Case (ii), when mB < md(0) � bm. We also show in Ap-
pendix d of the technical appendix that the equilibrium path is not dominated

by any other feasible path, but unlike Case (i), it approaches md = 1=3, that

is not the most productive state.

Clearly, initial heterogeneity plays an important role in the e¢ ciency prop-
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erties of the equilibrium path. What distinguishes Case (i), aside from a

relatively homogeneous beginning, is that the dancers can switch partners

rapidly enough to increase heterogeneity while at the same time maximizing

the increase in output. That is because each agent spends 1
3
of the time danc-

ing with any particular agent, and 2
3
of the time dancing with others. This

is what leads to the most productive state. In other cases, e¢ ciency would

require less heterogeneity than in the initial state, which can only be attained

by dancing with a restricted set of partners. This builds up an asymmetry

in an agent�s relationship with others, in that the agent has more in common

with those they have danced with previously, and makes the most productive

state unattainable without foresight. It also explains how, with a large initial

heterogeneity of agents, asymmetry in their relationships is introduced and is

built on along the equilibrium path. Thus, the model predicts that asym-

metric relationships among the agents can only occur when there is a large

degree of initial heterogeneity among them, and that this asymmetry leads to

ine¢ ciency.

6 Conjectures and Conclusions

We have considered a model of knowledge creation and exchange that is based

on individual behavior, allowing myopic agents to decide whether joint or

individual production is best for them at any given time. In the case of

four agents, we have allowed them to choose their best partner or to work in

isolation. This is a pure externality model of knowledge creation, with no

markets.

In the case of two people, there are a continuum of sink points (equilibria)

for the knowledge accumulation process. Every state where the two agents

have a negligible proportion of ideas in common is attainable as an equilibrium

for some initial condition. There is one additional and more interesting sink,

involving a large degree of homogeneity as well as symmetry of the two agents,

and this is attainable from a non-negligible set of initial conditions. Relative

to the e¢ cient state, the �rst set of sink points has agents that are too hetero-

geneous, while the second sink point has agents that are too homogeneous.18

With four persons, we analyze the special case where there is only joint

creation of new knowledge but no knowledge transfer. We �nd that, surpris-

ingly, for a range of initial conditions that imply a large degree of homogeneity

18The proximate cause is agent myopia.
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among agents, the sink is the e¢ cient state. If agents begin with a large

degree of heterogeneity, then the sink is ine¢ cient, and it can be one of several

points, including the analog of the relatively homogeneous sink in the two per-

son case. Despite a symmetric set of initial conditions, asymmetries can arise

endogenously in our structure. In particular, each agent might communicate

pairwise with some, but not all other, agents in equilibrium. The asymmetries

that arise can partition the agents endogenously into di¤erent groups, giving

rise to an asymmetric interaction structure from a situation that is initially

symmetric.

Notice that the equilibrium paths of the two person case have analogs in

the four person case. We conjecture that this is a general property, in that the

equilibrium paths with fewer people have analogs with more people, but the

sink points divide the parameter set into a �ner partition with more agents.

Thus, we do not think that knowledge transfer is responsible for the di¤erence

between the 2 and 4 person cases of the model we have analyzed; one can

always set knowledge transfer (
) to zero in the two person case and obtain

the same results as an example of the general model. The major driving force

behind the di¤erence in e¢ ciency results between the two and four person cases

was given at the end of the last section. Namely, the presence of more partners

in the 4 person case allows the dancers to build up heterogeneity while at the

same time maximizing the increase in output. This is not possible in the two

person case. However, it is important to develop the mechanics of knowledge

exchange in our model both to show that it doesn�t a¤ect the qualitative results

and for future applications to more complex models.

Many extensions of our work come to mind, though we note that the most

important tool we have used in the analysis is symmetry. Thus, if one wants

to extend the model to include more people, it is likely important that the

number of dancersN be even. It is important and interesting to add knowledge

transfer to the model with more than 2 people. Then we can study comparative

statics with respect to speeds of knowledge transfer and knowledge creation

on the equilibrium outcome and on its e¢ ciency. It would also be interesting

to add knowledge transfer without meetings, similar to a public good. For

instance, agents might learn from publicly available sources of information,

like newspapers or the web. Markets for ideas would also be a nice feature.

One set of extensions would allow agents to decide, in addition to the

people they choose with whom to work, the intensity of knowledge creation

and exchange.
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We note that what we have done, in essence, is to open the �black box�

of knowledge externalities in more aggregate models to �nd smaller �black

boxes� inside that we use in our model. These �black boxes� are given by

the exogenous functions representing knowledge transfer and creation within a

meeting of two agents. It will be important to open these �black boxes�as well.

That is, the microstructure of knowledge creation and transfer within meetings

must be explored. It will be useful to proceed in the opposite direction as

well, aggregating our model up to obtain an endogenous growth framework, to

see if our equilibrium patterns and e¢ ciency results persist.

Another set of extensions would be to add stochastic elements to the model,

so the knowledge creation and transfer process is not deterministic. As re-

marked in the introduction, probably our framework can be developed from a

more primitive stochastic model, where the law of large numbers is applied to

obtain our framework as a reduced form.19

Eventually, we must return to our original motivation for this model, as

stated in the introduction. Location seems to be an important feature of

knowledge creation and transfer, so regions and migration are important, along

with urban economic concepts more generally. It would be very useful to

extend the model to more general functional forms. Finally, it would be inter-

esting to proceed in the opposite direction by putting more structure on our

concept of knowledge, allowing asymmetry or introducing notions of distance,

such as a metric, on the set of ideas20 or on the space of knowledge.21 Finally,

it would be useful to add vertical di¤erentiation of knowledge, as in Jovanovic

and Rob (1989), to our model of horizontally di¤erentiated knowledge.
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7 Appendix 1: Proof of Lemma 1

Lemma 1: Under the symmetry assumptions on initial conditions for four
persons, suppose that mJ < md(0) < 2=5. If all persons have partners at time

0, then person 1 prefers (and thus all four persons prefer) to change partners

immediately (form (d) with �ij = 1
3
for all i and for all j 6= i).

Proof of Lemma 1: To begin the analysis, let us assume that one of the
con�gurations (b-1) to (b-3) occurs at time 0, and examine conditions under

which the dancers will continue to dance with the same partner or change to

another con�guration. Since all four dancers are symmetric at time 0, without

loss of generality, let us assume that con�guration (b-1) takes place at the start;

persons 1 and 2 dance together, while persons 3 and 4 do the same separately

but simultaneously. We focus on the payo¤s and decisions of dancer 1; the

calculations for the other dancers are similar. Suppose that con�guration (b-

1) began at time 0 and has continued up to time t. Since dancers 3 and 4 are

identical from the viewpoint of dancer 1, we examine the motivation of dancer

1 to change partners from 2 to 3 at time t.
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The calculations of Section 3 apply to each pair of dancers independently

in this case, since it is as if each pair of partners were isolated from the other

pair. What we must examine is the possibility that dancer 1 may want to

change partners from 2 to 3. This task can be achieved by applying relation

(42) where we set i = 1, j = 2, and k = 3. When we calculate the values of

md
12(t) and m

d
13(t) by using equations (25) and (26), please note that 
 is set

0, so there is no transfer of knowledge, only creation of knowledge.

First, to obtain the value of md
12(t) at time t > 0, we calculate the value of

each component in the right side of equation (25) for i = 1 and j = 2. Since

there is no transfer of knowledge when 1 and 2 are dancing together, it holds

at time t that

nd12(t) = n
d
21(t) = n

d(0) (71)

Thus, using (5), the number of ideas created by the partnership of 1 and 2

from time 0 to time t is given by

�nc12(t) =

Z t

0

�[nc12(s) � nd(0)2]
1
3ds (72)

and hence

nc12(t) = n
c
21(t) = n

c(0) + �nc12(t) (73)

Using (25),

n12(t) = nc12(0) + 2n
d
12(t)

= nc(0) + �nc12(t) + 2n
d(0)

So, applying (26) for i = 1 and j = 2 yields

md
12(t) =

nd(0)

nc(0) + �nc12(t) + 2n
d(0)

(74)

Of course, dancer 1 could switch partners at time t > 0, say from dancer 2

to dancer 3.22 Then we have

nc13(t) = n
c(0) (75)

Since dancers 1 and 3 have not met prior to time t, the number of ideas they

have in common is the number they had in common initially. Moreover,

nd13(t) = n
d(0) + �nc12(t)

22Symmetry implies that if dancer 1 wants to switch partners, then so do the other dancers.

This is consistent with the rules of square dancing.
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The number of ideas that dancer 1 knows but dancer 3 does not know at time

t is the number of ideas that dancer 1 knows but dancer 3 does not know

initially, plus the number of ideas that dancers 1 and 2 created during their

partnership from time 0 to time t. Similarly,

nd31(t) = n
d(0) + �nc34(t) = n

d(0) + �nc12(t) = n
d
13(t) (76)

By symmetry, �nc12(t) = �n
c
34(t), so n

d
31(t) = n

d
13(t). De�ne the total number

of ideas possessed by partners 1 and 3 at time t under the assumption that

dancer 1 switches partners from dancer 2 to dancer 3 exactly at time t to be

n13(t) = nc13(t) + n
d
13(t) + n

d
31(t)

= nc13(t) + 2n
d
13(t)

= nc(0) + 2
�
nd(0) + �nc12(t)

�
Thus, using (26),

md
13(t) =

nd(0) + �nc12(t)

nc(0) + 2[nd(0) + �nc12(t)]
(77)

Subtracting (74) from (77), we have

md
13(t)�md

12(t) =
�nc12(t)

�
nc(0) + �nc12(t) + n

d(0)
�

(nc(0) + �nc12(t) + 2n
d(0)) � (nc(0) + 2 [nd(0) + �nc12(t)])

> 0

(78)

which is positive because �nc12(t) is positive for any t > 0.

Here, we note that substituting (73) into (72) yields the integral equation

�nc12(t) =

Z t

0

�
�
(nc(0) + �nc12(s))n

d(0)2
�1=3

ds

and its solution is given by

�nc12(t) =

�
nc(0)2=3 +

2

3
�nd(0)2=3t

�3=2
� nc(0) (79)

Thus, by substituting (79) into each equation from (73) to (78), all variables

can be expressed as explicit functions of time t.

Now suppose that the initial value of m, md(0), is such that mJ < md(0) <

mB = 2=5, as illustrated in Figure 7. Then, equation (78) implies that for any

su¢ ciently small t > 0,

mJ < md
12(t) < m

d
13(t) < 2=5.
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Thus, g
�
md
12(t)

�
< g

�
md
13(t)

�
. So, using (42),

_y121 (t)� _y131 (t)

y1(t)
= g

�
md
12(t)

�
� g

�
md
13(t)

�
< 0 (80)

This means that as soon as dancing in the form of (b-1) in Figure 6 starts

at time 0, the value g
�
md
13(t)

�
of the shadow partnership between dancers 1

and 3 exceeds the value g
�
md
12(t)

�
of the actual partnership between 1 and 2.

Thus, dancer 1 wants to change partners from 1 to 3 immediately. Since all

four persons are in the symmetric situation when the dancing form (b-1) in

Figure 6 is initiated, everyone wants to change partners immediately.

8 Appendix 2: Proof of Lemma 2

Lemma 2: Assuming symmetry of initial conditions for four persons, suppose
that 2=5 < md(0) < 1=2. If they form partnerships f1; 2g and f3; 4g initially,
and keep the same partnerships, then there exists a time t0 such that for t > 0,

g(md
12(t))

>

<
g(md

13(t)) as t
<

>
t0

and the following relationship holds at time t0:

md
13(t

0) =
2

5
+

�
md(0)� 2

5

� �
1�md(0)

�
md(0)2

h
2�

�
1

md(0)
� 2
��
4� 1

md(0)

�i
Proof of Lemma 2: Under the partnership f1; 2g and f3; 4g, �rst we show
that there exists a unique time t0 > 0 such that

g(md
12(t

0)) = g(md
13(t

0)) (81)

Since condition (32) holds for all i; j = 1; 2; 3; 4 (i 6= j) at time t0, using (35)
and (42), we can see that the relation (81) holds if and only if

nc12(t
0)nd12(t

0)2 = nc13(t
0)nd13(t

0)2 (82)

or, using (71), (73), (75) and (76), if and only if

[nc(0) + �nc12(t
0)] � nd(0)2 = nc(0) �

�
nd(0) + �nc12(t

0)
�2

which can be rewritten as follows:

�nc12(t
0) � nd(0)2

�
1� 2n

c(0)

nd(0)
� nc(0)

nd(0)

�nc12(t
0)

nd(0)

�
= 0
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Since �nc12(t
0) � nd(0)2 > 0 for any t0 > 0, this means that the terms inside the

braces be zero, or
�nc12(t

0)

nd(0)
=
nd(0)

nc(0)
� 2 (83)

On the other hand, setting t = t0 in equation (77) and arranging terms yields

nc(0) + 2
�
nd(0) + �nc12(t

0)
�
=
nd(0)

md
13(t

0)
+
�nc12(t

0)

md
13(t

0)

or
nc(0)

nd(0)
+ 2� 1

md
13(t

0)
=
�nc12(t

0)

nd(0)

�
1

md
13(t

0)
� 2
�

Substituting (83) into the right hand side of this equation and arranging terms

yields

md
13(t

0) =

nd(0)
nc(0)

� 1
nc(0)
nd(0)

+ 2nd(0)
nc(0)

� 2

=
1� nc(0)

nd(0)�
nc(0)
nd(0)

�2
+ 2� 2nc(0)

nd(0)

(84)

Setting t = 0 in (77) and using md
13(0) = m

d(0), we have

md(0) =
nd(0)

nc(0) + 2nd(0)

or
nc(0)

nd(0)
=

1

md(0)
� 2 (85)

Substituting (85) into (84) yields

md
13(t

0) =
3� 1

md(0)�
1

md(0)
� 2
�2
+ 2� 2

�
1

md(0)
� 2
�

=
3� 1

md(0)

2�
�

1
md(0)

� 2
��
4� 1

md(0)

�
Deducting 2=5 from the both sides of this equation, we can obtain

md
13(t

0)� 2
5
=

(md(0)� 2
5
)
�
1�md(0)

�
md(0)2

h
2�

�
1

md(0)
� 2
��
4� 1

md(0)

�i
which leads to equation (52) in Lemma 2. Hence, relation (81) holds if and

only if equation (52) holds. We can readily see that the right hand side of
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equation (52) increases continuously from 2=5 to 1=2 as md(0) moves from 2=5

to 1=2. On the other hand, using (77) and (79), we can see that the value of

md
13(t) increases continuously from md(0) to 1=2 as t increases from 0 to 1.

Therefore, for any md(0) 2 (2=5; 1=2), relation (52) de�nes uniquely the time
t0 > 0 at which the equality (81) holds. Finally, since md

12(t) decreases and

md
13(t) increases with time t and since the function g(m) is single-peaked at

m = 2=5, we have relation (51).�

9 Appendix 3: Proof of Lemma 3

Lemma 3: In the context of Lemma 2, suppose that the initial partnerships
f1; 2g and f3; 4g switch to the new partnerships f1; 3g and f2; 4g at time t0

where

g
�
md
12(t

0)
�
= g(md

13(t
0))

and

md
12(t

0) = md
34(t

0) < mB < md
13(t

0) = md
14(t

0)

Assuming that the new partnerships are kept after time t0, let t00 be the time

at which md
12(t) and m

d
13(t) become the same:

md
12(t

00) = md
13(t

00)

Then, it holds for t > t0,

g
�
md
12(t)

� <
>
g(md

13(t)) as t
<

>
t00

and

g
�
md
13(t)

�
> g(md

14(t)) for t0 < t � t00

Hence, indeed, the new partnerships f1; 3g and f2; 4g formed at time t0 can be
sustained until time t00. This second switching-time, t00, is uniquely determined

by solving the following relationship:

�nc13(t
0; t00) = nd13(t

0)� nd12(t0) � �nc12(t0)

where �nc13(t
0; t) is the number of ideas created under the partnership f1; 3g

from time t0 to time t � t0, which is given by (86). The position where md
12(t)

meets md
13(t) is given by

md
12(t

00) = md
13(t

00) =
2

5
�
md(0)� 2

5

5md(0)� 1
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Proof of Lemma 3: To examine how long the new partnerships will be main-
tained, let us focus on the partnership f1; 3g. Let �nc13(t0; t) be the number of
ideas created under the partnership f1; 3g from time t0 to time t � t0, which is
given by

�nc13(t
0; t) =

Z t

t0
�
�
nc13(s) � nd13(s)2

�1=3
ds (86)

where, using (75) and (76), for t � t0

nc13(t) = nc31(t) = nc13(t
0) + �nc13(t

0; t)

= nc(0) + �nc13(t
0; t)

(87)

nd13(t) = n
d
31(t) = n

d
13(t

0) = nd(0) + �nc12(t
0) (88)

Substituting (87) and (88) into (86) and solving the integral equation yields

�nc13(t
0; t) =

�
nc(0)2=3 +

2

3
�nd13(t

0)2=3(t� t0)
�3=2

� nc(0) (89)

Using (25), (87) and (88),

n13(t) = nc13(t) + 2n
d
13(t)

= nc(0) + 2nd13(t
0) + �nc13(t

0; t)

So,

md
13(t) =

nd13(t
0)

nc(0) + 2nd13(t
0) + �nc13(t

0; t)
(90)

At any time t > t0, dancer 1 could switch from the present partner 3 to the

previous partner 2 who has been dancing with person 4 since time t0. Then,

nc12(t) = n
c
12(t

0) (91)

nd12(t) = n
d
12(t

0) + �nc13(t
0; t) (92)

nd21(t) = n
d
12(t) by symmetry

so

n12(t) = nc12(t
0) + 2

�
nd12(t

0) + �nc13(t
0; t)
�

which leads to

md
12(t) =

nd12(t
0) + �nc13(t

0; t)

nc12(t
0) + 2

�
nd12(t

0) + �nc13(t
0; t)
� (93)

Likewise, at any time t > t0, dancer 1 could switch from the present partner

3 to person 4 (instead of person 2). Then, since persons 1 and 4 never danced

together previously,

nc14(t) = n
c(0) (94)
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nd14(t) = nd(0) + �nc12(t
0) + �n13(t

0; t)

= nd13(t
0) + �n13(t

0; t) (95)

nd41(t) = n
d
14(t) by symmetry

so

n14(t) = nc(0) + 2
�
nd13(t

0) + �n13(t
0; t)
�

and hence

md
14(t) =

nd13(t
0) + �n13(t

0; t)

nc(0) + 2
�
nd13(t

0) + �n13(t0; t)
� (96)

By di¤erentiating (90), (93) and (96), we have

_md
12(t) =

nc12(t
0)�

nc12(t
0) + 2

�
nd12(t

0) + �nc13(t
0; t)
��2 ��_nc13(t0; t) > 0 (97)

_md
13(t) = �

nd13(t
0)�

nc(0) + 2nd13(t
0) + �nc13(t

0; t)
�2 ��_nc13(t0; t) < 0 (98)

_md
14(t) =

nc(0)�
nc(0) + 2

�
nd13(t

0) + �n13(t0; t)
��2 ��_nc13(t0; t) > 0 (99)

where, from (89),

�_nc13(t
0; t) = �

�
nc(0)2=3 +

2

3
�nd13(t

0)2=3(t� t0)
�1=2

nd13(t
0)2=3 > 0

Hence, under the partnerships f1; 3g and f1; 4g, both md
12(t) and m

d
14(t) in-

crease while md
13(t) decreases with time t. Let t

00 be the time at which md
12(t)

becomes equal to md
13(t):

md
12(t

00) = md
13(t

00) (100)

Then, since md
12(t

0) < mB < md
13(t

0) = md
14(t

0) and since g(m) is single-peaked

at mB, it holds that

min
�
g(md

12(t)); g(m
d
13(t))

	
> g(md

12(t
0)) > g(md

14(t)) for t0 < t � t00 (101)

Hence, in the time interval (t0; t00], dancer 1 never desires to switch partners

from person 3 to person 4. It is, however, not a priori obvious which of

g(md
12(t)) and g(m

d
13(t)) is greater in the interval (t

0; t00). However, given that

function g(m) is steeper on the right of bliss point mB in Figure 9, we can

guess that the value of g(md
13(t)) is increasing faster (initially, at least) than

the value of g(md
12(t)), and hence the partnership f1; 3g will continue until

md
13(t) crosses the bliss point and then becomes the same as m

d
12(t). Indeed,

we prove this next.
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In the context of Lemma 2, suppose that the initial partnerships f1; 2g
and f3; 4g switch to the new partnerships f1; 3g and f2; 4g at time t0, when
condition (57) holds. And assume that the new partnerships are kept after

time t0. Then, since each of f1; 2g and f1; 3g is pairwise symmetric, applying
(35) and (42) in the present context, for t � t0 we have

g
�
md
13(t)

�
R g

�
md
12(t)

�
as nc13(t)n

d
13(t)

2 R nc12(t)nd12(t)2 (102)

Using (87), (88), (91) and (92), it follows that

nc13(t)n
d
13(t)

2 � nc12(t)nd12(t)2

= [nc13(t
0) + �nc13(t

0; t)]nd13(t
0)2 � nc12(t0)

�
nd12(t

0) + �nc13(t
0; t)
�2

= �nc13(t
0; t)nd13(t

0)2
�
1� 2n

c
12(t

0)nd12(t
0)

nd13(t
0)2

� nc12(t
0)

nd13(t
0)2
��nc13(t0; t)

�
Hence, for t � t0, it holds that

g
�
md
13(t)

�
R g

�
md
12(t)

�
as �nc13(t

0; t) Q nd13(t
0)2

nc12(t
0)
� 2nd12(t0) (103)

To simplify the expression above, we derive a useful equality. By de�nition,

the following identity holds at any time t:

n1(t) = n
c
12(t) + n

d
12(t) = n

c
13(t) + n

d
13(t) (104)

Setting t = t0 in (104) and using (82) yields

nc12(t
0) =

nd13(t
0)2

nd12(t
0) + nd13(t

0)
(105)

nc13(t
0) =

nd12(t
0)2

nd12(t
0) + nd13(t

0)
(106)

Substituting (105) into the last term in (103) gives

nd13(t
0)2

nc12(t
0)
� 2nd12(t0) = nd13(t

0)� nd12(t0)

=
�
nd(0) + �nc12(t

0)
�
� nd(0)

= �nc12(t
0)

using (71) and (88) at t = t0. Thus, we can conclude that

g
�
md
13(t)

�
R g

�
md
12(t)

�
as �nc13(t

0; t) Q �nc12(t0) (107)

Let t00 be the time such that

�nc13(t
0; t00) = �nc12(t

0) (108)
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Since equation (89) implies that �nc13(t
0; t0) = 0 and since �nc13(t

0; t) increases

continuously to 1 as t tends to 1, equation (108) uniquely de�nes t00 > t0.

Hence, we can conclude from (107) that for t � t0,

g
�
md
13(t)

�
R g

�
md
12(t)

�
as t Q t00 (109)

Substituting (105) into (93) and setting t = t00 and using �nc13(t
0; t00) =

�nc12(t
0) = nd13(t

0)� nd12(t0) yields

md
12(t

00) =
nd13(t

0)
nd13(t

0)2

nd12(t
0)+nd13(t

0)
+ 2nd13(t

0)

Likewise, using (87) to set nc13(t
0) = nc(0) in (90) and using (106) also yields

md
13(t

00) =
nd13(t

0)
nd13(t

0)2

nd12(t
0)+nd13(t

0)
+ 2nd13(t

0)

Hence, rewriting the expression above, and using the relations nd13(t
0) = nd(0)+

�nc12(t
0) and nd12(t

0) = nd(0), we have

md
12(t

00) = md
13(t

00) = 1
nd13(t

0)
nd12(t

0)+nd13(t
0)
+2

= 1
nd(0)+�nc12(t

0)
2nd(0)+�nc12(t

0)
+2

= 1

1+
�nc12(t

0)
nd(0)

2+
�nc12(t

0)
nd(0)

+2

= 1

3� nc(0)

nd(0)

(using (83))

= 1
5� 1

md(0)

(using (85))

which can be rewritten as (63). Thus,

md
12(t

00) = md
13(t

00) < mB = 2=5 (110)

This gives the alternative de�nition of time t00, which has been introduced in

(59). Thus, (107) and (108) imply (60) and (62) in Lemma 3. Finally, relation

(61) follows immediately from (101).�
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Figure 1: The sets Mi and Mj under various values of �.
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Figure 2: The set M under various values of �, and the bliss point B.
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Figure 3: Dynamics under a �xed value of �.
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Figure 4: Dynamics with � endogenous.
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Figure 5: E¢ ciency and the bliss point
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Figure 6: Possible equilibrium con�gurations
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Figure 7: The g(m) curve and the bliss point when 
 = 0 and � = 1.
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Figure 8: Correspondence between the initial point md(0) and the long-run

equilibrium point md(1).
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Figure 9: (a) Real lines with arrows: the md
13

�
md(0)

�
curve and the

determination of the switching positions md
13

�
md
0

�
and md

12

�
md
0

�
. (b) Broken

lines with arrows: the ~md
�
md(0)

�
curve and the switching position ~md

�
md
0

�
.
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10 Technical Appendix

10.1 Appendix a

Theorem A1: Knowledge dynamics evolve according to the system:

_md
ij = [1� �ij] � � � f(1�md

ij)(1�md
ij �md

ji)g
��ij � f
 � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

_md
ji = [1� �ji] � � � f(1�md

ji)(1�md
ij �md

ji)g
��ji � f
 � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3g

Proof of Theorem A1: Recalling (3),

md
ij +m

c = 1�md
ji

and dividing by nij yields

_yi
nij

=
_ni
nij

= [1� �ij] � � � (1�md
ji) +

�ij � (� � [mc �md
ij �md

ji]
1
3 + 
 � [md

ji �mc]
1
2 )

_ncij
nij

= �ij � (� � [mc �md
ij �md

ji]
1
3 + 
 � [md

ji �mc]
1
2

+
 � [md
ij �mc]

1
2 )

_ndij
nij

= [1� �ij] � � � (1�md
ji)� �ij � 
 � [md

ij �mc]
1
2

Substituting (12) for mc,

_yi
nij

=
_ni
nij

= [1� �ij] � � � (1�md
ji) +

�ij � (� � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3 + 
 � [md

ji � (1�md
ij �md

ji)]
1
2 )

_ncij
nij

= �ij � (� � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3 + 
 � [md

ji � (1�md
ij �md

ji)]
1
2

+
 � [md
ij � (1�md

ij �md
ji)]

1
2 )

_ndij
nij

= [1� �ij] � � � (1�md
ji)� �ij � 
 � [md

ij � (1�md
ij �md

ji)]
1
2
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Now

_md
ij =

d(ndij=n
ij)

dt

=
_ndij
nij

�
ndij � _nij

(nij)2

=
_ndij
nij

�
ndij
nij

� _n
ij

nij

= [1� �ij] � � � (1�md
ji)� �ij � 
 � [md

ij � (1�md
ij �md

ji)]
1
2 �md

ij � (
_ndij
n
+
_ndji
n
+
_ncij
n
)

= [1� �ij] � � � (1�md
ji)� �ij � 
 � [md

ij � (1�md
ij �md

ji)]
1
2

�md
ij � f[1� �ij] � � � (1�md

ji)� �ij � 
 � [md
ij � (1�md

ij �md
ji)]

1
2 + [1� �ij] � � � (1�md

ij)

��ij � 
 � [md
ji � (1�md

ij �md
ji)]

1
2 + �ij � (� � [(1�md

ij �md
ji) �md

ij �md
ji]

1
3

+
 � [md
ji � (1�md

ij �md
ji)]

1
2 + 
 � [md

ij � (1�md
ij �md

ji)]
1
2 )g

= [1� �ij] � � � (1�md
ji)� �ij � 
 � [md

ij � (1�md
ij �md

ji)]
1
2

�md
ij � f[1� �ij] � � � (1�md

ji) + [1� �ij] � � � (1�md
ij)

+�ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f1�md
ji � 2md

ij + (m
d
ij)
2 +md

ij �md
jig

��ij � f
 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji)�md
ij + (m

d
ij)
2g

��ij � f
 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji)�md
ij(1�md

ij)g
��ij � f
 � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji �md
ij)g

��ij � f
 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

The fourth line follows from (11), that implies

_nij

nij
=
_ndij
nij

+
_ndji
nij

+
_ncij
nij

(111)

Symmetric calculations hold for _md
ji. �

10.2 Appendix b

Theorem A2: Suppose that (md
ij;m

d
ji) 2 M . Then (md

ji;m
d
ij) 2 M and

the line segment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)] �M . In particular, if M 6= ;, then it

contains a point on the diagonal segment [(0; 0); (1; 1)]. Moreover, the diagonal

intersected with M is a convex set. In fact, every line parallel to the diagonal
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intersected with M is a convex set. Finally, every point in M \ ((0; 0); (1; 1))
has a neighborhood contained in M .

To prove Theorem A2, we proceed with a sequence of lemmata. First we

need some de�nitions to make notation easier.

De�nitions:

f(m;m0) = � � [(1�m�m0) �m �m0]
1
3

h(m;m0) = 
 � [(1�m�m0) �m0]
1
2

With these de�nitions, the equations de�ningMi (15) andMj (16) become:

f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� � � (1�md

ji) > 0 (112)

f(md
ji;m

d
ij) + h(m

d
ji;m

d
ij)� � � (1�md

ij) > 0 (113)

Lemma A1: (md
ij;m

d
ji) 2 Mi and md

ij � md
ji imply (m

d
ji;m

d
ij) 2 Mi.

(md
ij;m

d
ji) 2Mj and md

ij � md
ji imply (m

d
ji;m

d
ij) 2Mj.

Proof of Lemma A1: f(md
ij;m

d
ji) = f(m

d
ji;m

d
ij).

h(md
ji;m

d
ij)

h(md
ij ;m

d
ji)
= [

md
ij

md
ji
]
1
2 � 1,

since md
ij � md

ji. (m
d
ij;m

d
ji) 2 Mi implies f(md

ij;m
d
ji) + h(m

d
ij;m

d
ji) � �(1 �

md
ji) > 0. Since h(md

ji;m
d
ij) � h(md

ij;m
d
ji) and m

d
ij � md

ji, f(m
d
ji;m

d
ij) +

h(md
ji;m

d
ij)� �(1�md

ij) > 0. Hence, (m
d
ji;m

d
ij) 2Mi. A symmetric argument

works for the second part of the lemma. �
Lemma A2: Suppose that md

ij � md
ji. Then (m

d
ij;m

d
ji) 2M if and only if

(md
ij;m

d
ji) 2Mi.

Proof of Lemma A2: It is obvious that (md
ij;m

d
ji) 2M implies (md

ij;m
d
ji) 2

Mi. So suppose that (md
ij;m

d
ji) 2 Mi. Then by symmetry of the de�ni-

tions of Mi and Mj, (md
ji;m

d
ij) 2 Mj. By Lemma A1, (md

ji;m
d
ij) 2 Mi.

Applying symmetry of the de�nitions again yields (md
ij;m

d
ji) 2 Mj. Hence

(md
ij;m

d
ji) 2Mj \Mi =M . �

Lemma A3: Suppose that (md
ij;m

d
ji) 2 M . Then (md

ji;m
d
ij) 2 M and

the line segment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)] �M . In particular, if M 6= ;, then it

contains a point on the diagonal segment [(0; 0); (1; 1)].

Proof of Lemma A3: First, if (md
ij;m

d
ji) 2 M , then (md

ji;m
d
ij) 2 M

by symmetry of the de�nitions of Mi and Mj. Now consider the line seg-

ment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)]. In particular, consider the case m

d
ij � md

ji and

the line segment between (md
ij;m

d
ji) and the point (m;m) on the diagonal,

[(md
ij;m

d
ji); (m;m)] � [(md

ij;m
d
ji); (m

d
ji;m

d
ij)] (the line segment [(m;m); (m

d
ji;m

d
ij)]

can be covered with a symmetric argument). Since for all (bmd
ij; bmd

ji) 2 [(md
ij;m

d
ji); (m;m)],
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bmd
ij � bmd

ji, by Lemma A2 it su¢ ces to show that (bmd
ij; bmd

ji) 2 Mi. We must

verify the equation stating that (bmd
ij; bmd

ji) 2Mi, namely

f(bmd
ij; bmd

ji) + h(bmd
ij; bmd

ji)� � � (1� bmd
ji) > 0 (114)

Now for all (bmd
ij; bmd

ji) 2 [(md
ij;m

d
ji); (m;m)], there exists an x � 0 with bmd

ij =

md
ij � x � md

ji + x = bmd
ji, since the line segment lies below the diagonal. Now

f(md
ij � x;md

ji + x)� f(md
ij;m

d
ji)

= � � [(1�md
ji �md

ij) � (md
ij � x) � (md

ji + x)]
1
3 � � � [(1�md

ji �md
ij) � (md

ij) � (md
ji)]

1
3

= � � [(1�md
ji �md

ij) � (md
ij) � (md

ji) + (1�md
ji �md

ij) � x � (md
ij �md

ji � x)]
1
3

�� � [(1�md
ji �md

ij) � (md
ij) � (md

ji)]
1
3

� � � [(1�md
ji �md

ij) � (md
ij) � (md

ji) + (1�md
ji �md

ij) � x2]
1
3

�� � [(1�md
ji �md

ij) � (md
ij) � (md

ji)]
1
3

� 0

h(md
ij � x;md

ji + x)� h(md
ij;m

d
ji)

= 
 � [(md
ji + x) � (1�md

ji �md
ij)]

1
2 � 
 � [md

ji � (1�md
ji �md

ij)]
1
2 � 0

Finally,

� � (1�md
ji � x) � � � (1�md

ji)

Hence,

f(bmd
ij; bmd

ji) + h(bmd
ij; bmd

ji)� � � (1� bmd
ji)

= f(md
ij � x;md

ji + x) + h(m
d
ij � x;md

ji + x)� � � (1�md
ji � x)

� f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� � � (1�md

ji) > 0

The last line follows because (md
ij;m

d
ji) 2M . �

Lemma A4: For any constant a 2 (�1; 1) the intersection of the set M
and the line f(md

ij;m
d
ji) 2 R2+ j md

ij +m
d
ji � 1, md

ji = m
d
ij � ag is a convex set.

Proof of Lemma A4: SinceM is symmetric with respect to the diagonal

md
ij = m

d
ji, let us consider a � 0. Setting md

ji = m
d
ij � a in (14), de�ne

k(md
ij) � Fi(m

d
ij;m

d
ij � a)

= �
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�1=3
+

�
(1 + a� 2md

ij)(m
d
ij � a)

�1=2 � �(1 + a�md
ij)

Since md
ji = md

ij � a � 0 and 1 � md
ij + m

d
ji = 2md

ij � a, the domain of the
function k is

a � md
ij �

1 + a

2
where 0 � a < 1
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By Lemma A2, the intersection of the set M and the line md
ji = m

d
ij � a is the

set of points satisfying

k(md
ij) > 0:

We show that function k(md
ij) is strictly concave on (a;

1+a
2
), and thus the set

of points satisfying the inequality is convex. Di¤erentiation of the function k

yields

k0(md
ij) = A(m

d
ij) +B(m

d
ij) + �

where

A(md
ij) �

�

3

�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

��2=3 ��6(md
ij)
2 + 2md

ij(1 + 3a)� a(1 + a)
�

B(md
ij) �




2

�
(1 + a� 2md

ij)(m
d
ij � a)

��1=2
(1 + 3a� 4md

ij)

The second derivative of k is

k00(md
ij) = A

0(md
ij) +B

0(md
ij)

where

A0(md
ij) = �

2�
�
(md

ij)
2(1 + 3a2)� a(1 + a)(1 + 3a)md

ij + a
2(1 + a)2

	
9
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�5=3
= �

2�

�h
md
ij(1 + 3a

2)� a(1+a)(1+3a)
2

i2
+ 3a2(1+a)2(1�a)2

4

�
9
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�5=3
(1 + 3a2)

B0(md
ij) = �


(1� a)2

4
�
(1 + a� 2md

ij)(m
d
ij � a)

�3=2
implying that k00(md

ij) = A0(md
ij) + B

0(md
ij) < 0 on (a; 1+a

2
), so k is strictly

concave on (a; 1+a
2
). Thus, fmd

ij 2 (a; 1+a2 ) j k(m
d
ij) > 0g is convex, and the

proof of the lemma is complete.�
Lemma A5: Every point in M \ ((0; 0); (1; 1)) has a neighborhood con-

tained in M .

Proof of Lemma A5: This follows directly from the de�nition of M ; it

implies that M is an open set.�
Theorem A2 follows directly from the combination of all of the Lemmata

in this section.
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10.3 Appendix c

Lemma A6: The function g(m) de�ned by (20) has the following properties:
(i) g(m) is strictly quasi-concave on

�
0; 1

2

�
.

(ii) g(m) achieves its maximal value at mB 2 [1
3
; 2
5
].

(iii) The point (mB;mB) corresponds to the bliss point B in Figure 2, which

is the unique point contained in every M that is nonempty.

Proof of Lemma A6: (i) and (ii): For m 2
�
0; 1

2

�
, let

x(m) � m

1�m or m(x) =
x

1 + x

and de�ne

G(x) � �
�
(1� x)x2

�1=3
+ 
 [(1� x)x]1=2 for x 2 [0; 1] (115)

Then, using de�nition (20)

g(m) = G(x(m))

Hence,

g0(m) = G0(x(m)) � x0(m)

Notice that

x0(m) = 1 +
m

(1�m)2 > 0

so

g0(m) R 0 exactly as G0(x(m)) R 0.

Now

G0(x) = C(x) +D(x)

where
C(x) � �

3
[(1� x)x2]�2=3 (2� 3x)x

D(x) � 

2
[(1� x)x]�1=2 (1� 2x)

Taking the derivatives of C and D respectively yields

C 0(x) = �2�
9
(1� x)�5=3x�4=3 < 0

D0(x) = �

4
(1� x)�3=2x�3=2 < 0

Therefore, considering that

C(x) R 0 as x Q 2=3
D(x) R 0 as x Q 1=2
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we can conclude that there exists a unique x� 2 [1=2; 2=3] such that

G0(x) R 0 as x Q x�

meaning that G is strictly single peaked and strictly quasi-concave, achieving

its maximum value exactly at x�. Hence, the function g(m) also is strictly

single peaked and strictly quasi-concave, achieving its maximum value at

mB � m(x�) = x�

1 + x�
2 [1=3; 2=5]

(iii) To show that the point (mB;mB) corresponds to the bliss point B in

Figure 2, let us recall how the bliss point has been de�ned. Let M(�) be the

set M under the parameter value � > 0. Then, a point (�md
ij;
�md

ji) 2 R2 is
called a bliss point if it holds that for any � > 0,

M (�) 6= ; =) (�md
ij;
�md

ji) 2M (�) (116)

To show the existence and the uniqueness of such a point, since M(�) is

symmetric to the diagonal, let us focus on the lower half of M(�), and de�ne

ML(�) =
�
(md

ij;m
d
ji) 2M(�) j md

ij � md
ji

	
Then, by Lemma A2, ML(�) coincides with the lower part of Mi associated

with �:

ML(�) =
�
(md

ij;m
d
ji) 2Mi(�) j md

ij � md
ji

	
= f(md

ij;m
d
ji) 2 R2 j md

ij � md
ji � 0;md

ij +m
d
ji � 1;

f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� �(1�md

ji) > 0g

When md
ij + m

d
ji = 1 or md

ji = 0, we have f(md
ij;m

d
ji) = h(md

ij;m
d
ji) = 0,

implying that ML(�) does not contain any point (md
ij;m

d
ji) such that m

d
ij +

md
ji = 1 or m

d
ji = 0. Thus, we can rewrite M

L(�) as follows:

ML(�) =
n
(md

ij;m
d
ji) 2 R2 j md

ij � md
ji > 0;m

d
ij +m

d
ji < 1;

f(md
ij ;m

d
ji)

1�md
ji

+
h(md

ij ;m
d
ji)

1�md
ji

> �
o

= f(md
ij;m

d
ji) 2 R2 j md

ij � md
ji > 0;m

d
ij +m

d
ji < 1;

�
h�
1� md

ij

1�md
ji

�
md
ij

1�md
ji

md
ji

1�md
ji

i1=3
+ 


h�
1� md

ij

1�md
ji

�
md
ji

1�md
ji

i1=2
> �g

(117)

Given any (md
ij;m

d
ji) 2ML(�) such that md

ij > m
d
ji, de�ne

m �
md
ij +m

d
ji

2
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Then, md
ij > m > md

ji, and (m;m) 2ML(�) by Lemma A3. Furthermore,�
1� m

1�m

��
m

1�m

�2
�
 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

=
(1�md

ij �md
ji)m

2

(1�m)3 �
(1�md

ij �md
ji)m

d
ijm

d
ji

(1�md
ji)
3

>
(1�md

ij �md
ji)

(1�md
ji)
3

(m2 �md
ijm

d
ji)

=
(1�md

ij �md
ji)

(1�md
ji)
3

(md
ij �md

ji)
2

4
> 0

Likewise, �
1� m

1�m

�
m

1�m �
 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

=
(1�md

ij �md
ji)m

(1�m)2 �
(1�md

ij �md
ji)m

d
ji

(1�md
ji)
2

>
(1�md

ij �md
ji)

(1�md
ji)
2

(m�md
ji) > 0

Therefore, using the function g(m) de�ned by (20), we can conclude that when

md
ij > m

d
ji and m � (md

ij +m
d
ji)=2,

g(m) > �

" 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

#1=3
+


" 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

#1=2
(118)

Moreover, (i) and (ii) of Lemma A6 mean that

g(mb) > g(m) for any m 6= mb (119)

Combining (117), (118) and (119), we can conclude that given any (md
ij;m

d
ji)

such that md
ij � md

ji

(md
ij;m

d
ji) 2ML(�) =) (mB;mB) 2ML(�).

That is,

ML(�) 6= ; =) (mB;mB) 2ML(�) (120)

Hence, the point (mB;mB) is a bliss point. Finally, to show that the bliss point

is unique, take any � > 0 such that ML(�) 6= ;, and take any (md
ij;m

d
ji) 2

ML(�) such that (md
ij;m

d
ji) 6= (mB;mB). If md

ij > md
ji, then the inequality
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(118) holds when (md
ij;m

d
ji) is replaced with (m

d
ij;m

d
ji). If m

d
ij = md

ji, then

g(mB) > g(md
ij) by (119). Hence, if we de�ne

" � g(mB)�

8<:�
" 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

#1=3
+ 


" 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

#1=29=;
then " is positive. Replacing � with g(mB)� "

2
and (md

ij;m
d
ji) with (m

d
ij;m

d
ji)

in (117), we can see that

(md
ij;m

d
ji) =2ML

�
g(mB)� "

2

�
whereas (mB;mB) 2 ML

�
g(mB)� "

2

�
. Thus, the point (md

ij;m
d
ji) is not con-

tained in the nonempty setML
�
g(mB)� "

2

�
, implying that the point (md

ij;m
d
ji) 6=

(mB;mB) is not a bliss point.�

10.4 Appendix d

Theorem A3: In Cases (i) and (ii), the equilibrium path is undominated.

Proof of Theorem A3: First, notice that any feasible path �ij(�) satis�es
the following conditions:

�ij(t) = �ji(t) for all t and for all i 6= j.

Focus on person i; the equations for the other persons are analogous.

For the remainder of this section, restrict attention to the situation when

max
j 6=i
g(md

ij(t)) > �. Then, for each i, any myopic core path or any solution to

the planner�s optimization problem requires thatX
j 6=i

�ij(t) = 1.

Using these two conditions, we can easily obtain:

�14(t) = �23(t) = 1� �12(t)� �13(t),
�24(t) = �13(t), �34(t) = �12(t).

In other words, the positions of all four persons can be exchanged. In the

following, we focus on person 1, without loss of generality. Using equation

(29), and analogous to the derivation of (37), omitting t we obtain

_y1
y1
= �12 � g(md

12) + �13 � g(md
13) + �14 � g(md

14) (121)
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Of course, for a path to be undominated in any interval of time, _y1=y1, or

equivalently _y1, must be maximal at any t (over �12 and �13). So we examine

the �rst order condition for maximizing _y1=y1. But when more than one com-

bination of �12 and �13 maximize (121), then the second order conditions must

be examined. To state the second order condition we calculate

d( _y1
y1
)

dt
= _�12 � g(md

12) +
_�13 � g(md

13) +
_�14 � g(md

14)

+�12 � g0(md
12) � _md

12 + �13 � g0(md
13) � _md

13 + �14 � g0(md
14) � _md

14

Suppose that md
12 = m

d
13 = m

d
14 � md. We also know that except on a set

of measure zero, _�12 + _�13 + _�14 = 0. Thus,

d( _y1
y1
)

dt
= g0(md)f�12 � _md

12 + �13 � _md
13 + �14 � _md

14g

Similar to the derivation of (49), we calculate:

_m12 = g(md) � f(1� 2md) � �13 + (1� 2md) � �14 �md � �12g
_m13 = g(md) � f(1� 2md) � �12 + (1� 2md) � �14 �md � �13g
_m14 = g(md) � f(1� 2md) � �12 + (1� 2md) � �13 �md � �14g

De�ning

�(�12; �13) � 1

g(md)
� f�12 � _md

12 + �13 � _md
13 + �14 � _md

14g

= 2(1� 2md) � f�12 + �13 � �12 � �13 � (�12)2 � (�13)2g
�mdf(�12)2 + (�13)2 + (1� �12 � �13)2g

we have
d( _y1
y1
)

dt
= g0(md) � g(md) � �(�12; �13)

Recalling from footnote 17 that maximizing d2y1=dt2 is the same as maxi-

mizing d( _y1
y1
)=dt. Thus, the second order conditions require that

(a) if g0(md) > 0, then �(�12; �13) must be maximized.

(b) if g0(md) < 0, then � �(�12; �13) must be maximized.

By di¤erentiating �, it is easy to see that � is strictly concave under any

�xed md < 1=2, achieving a unique maximum at

�12 = �13 = �14 = 1=3
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Turning next to Case (i), starting from a common initial conditionmd(0) >

mJ , since g0(md(0)) > 0 we can readily see that the unique undominated path

is �ij(t) = 1=3 for all t and for all j 6= i, which is the same as the equilibrium
path for Case (i).

For Case (ii), g0(md(0)) < 0, any undominated path must start with a

corner solution. For example,

�12 = �21 = 1, �34 = �43 = 1.

This is identical to the �rst phase of the equilibrium path of Case (ii). The

proofs that the last two phases of the equilibrium path for Case (ii) are un-

dominated follow similar logic.�
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