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Trade Coefficients and the Role of Elasticity in a Spatial
CGE Model Based on the Armington Assumption
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Abstract

The Armington Assumption in the context of multi-regional CGE models is commonly
interpreted as follows: Same commodities with different origins are imperfect substitutes
for each other. In this paper, a static spatial CGE model that is compatible with this
assumption and explicitly considers the transport sector and regional price differentials
is formulated. Trade coefficients, which are derived endogenously from the optimization
behaviors of firms and households, are shown to take the form of a potential function.
To investigate how the elasticity of substitutions affects equilibrium solutions, a simpler
version of the model that incorporates three regions and two sectors (besides the transport
sector) is introduced. Results indicate: (1) if commodities produced in different regions
are perfect substitutes, regional economies will be either autarkic or completely symmetric
and (2) if they are imperfect substitutes, the impact of elasticity on the price equilibrium
system as well as trade coefficients will be nonlinear and sometimes very sensitive.
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1 Introduction

According to traditional trade theory (e.g. Samuelson (1953)), the phenomenon known as
“cross-hauling” or “two-way trade” may not appear under perfect competition. On the contrary,
it is quite common for a pair of countries to trade the same commodities with each other.
Brander (1981) explains the existence of cross-hauling by introducing “imperfect competition”
(strategic interaction among firms) into traditional trade theory. In addition to theoretical
explanations, cross-hauling can also be interpreted from the following statistical viewpoints: (1)
every practical classification of a commodity involves great diversity in quality, (2) a country
often represents a highly aggregated area, and (3) trade statistics capture transactions in a finite
period during which a country may seek supplies of a commodity from various countries due to
seasonality and other factors. It must be noted that the first point explains the “intra-industry
trade” of half-products that belongs to the same category as final products.

In many multi-regional models, potential type interregional trade coefficients are formulated
to accommodate the observation of cross-hauling. For example, the most popular formulation
assumes that the quantities of interregional trade are positively related to production (supply)
capacities and negatively related to CIF prices. This kind of formulation can be derived from
Wilson’s entropy model (see Wilson (1970)). However, the problem of such formulations is
that they are based on analogies in physics or on statistical principles; they do not provide a
theoretical explanation from the view of rational and deterministic decision making of firms
or individuals. Therefore, when such a formulation is used, there may be inconsistencies in
economic models. 1 On the other hand, in CGE literature, the most commonly used method to
justify the phenomenon of cross-hauling under a perfect competition market is to employ the
Armington Assumption. This assumes that same commodities produced in different origins are
imperfect substitutes for each other. The assumption of perfect competition, to some extent,
is out of touch with economic reality. Thus, an imperfect competition approach appears to
be more preferable in the CGE model to justify the existence of cross-hauling. However, this
requires additional information on industry agglomeration (number of firms) as well as scale
economies (data about fixed cost) for model calibration, and this is often extremely difficult
to obtain. This is particularly true when developing economies or relatively small regions are
studied. In addition, the “cross-hauling” caused by the statistical reasons described above
is difficult to explain with imperfect competition. Therefore, in many spatial CGE (SCGE)
models, perfect competition and the Armington Assumption are still the most popular and
standard assumptions used by CGE modelers.

The Armington assumption is easy to incorporate and can also be used to justify the existence
of cross-hauling under a perfect competition market. However, relationships among the Arm-
ington elasticity, trade coefficient, spatial price equilibrium (SPE), and model solutions have
not been carefully clarified in existing SCGE literature. One reason is that existing studies tend
to regard the transport sector as an ordinary service sector or as an imaginary transport agency
that requires no resource for producing transport services (see Miyagi and Hongbu (1993) and

1Meng and Ando (2005) shows that very similar potential type interregional trade coefficients can be logically
derived from the economic principle of deterministic decision making of firm or individual under the framework
of multi-regional input-output framework rather than from the vague and irrelevant concepts of social physics.
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GTAP 2 (1997)). The problem is that transport conditions, fares in particular, are a source of
regional price differentials and should be consistent with the SPE system. Without an explicit
consideration of the unique characteristics of the transport sector, it is difficult to explain how
transport conditions affect trade patterns and the SPE system under given Armington elastic-
ity. It is also difficult to show how Armington elasticity affects trade patterns and the SPE
system under given transport conditions. To justify considering the behavior of transport firms
explicitly in SCGE model, refer to Harker (1987)3, Haddad and Hewings (2001), and Macann
(2005) .

The application of the Armington Assumption also requires information about elasticity of
substitution between goods from different regions, and this is normally difficult to estimate
when the number of regions and sectors is large. In many existing SCGE models, such infor-
mation is based on existing literature or given by the modelers without adequate verification
of its accuracy. Without significant information on the elasticity of substitution, use of the
Armington assumption may lead to arbitrary model simulation results. This is another reason
why a detailed estimation of the property of the Armington Assumption in the SCGE model
is important.4

Based on the Armington Assumption and the assumption of a perfect competitive market,
a 3-region, 2-sector (besides the transport sector) SCGE model is formulated in Section 2 of
this paper. The main feature of this model is that behaviors of the transport sector and trans-
portation networks are explicitly considered. In Section 3, the computation algorithm of the
SCGE model is discussed. This is followed by a detailed evaluation of the Armington Assump-
tion property summarized relative to simulation results based on three different benchmark
calibrations. Section 4 provides conclusions.

2 The SCGE Model

In this section, basic assumptions of the model are introduced and followed by detailed de-
scriptions of the behavior of individual economic agents (general industries, households, and
the transport sector). It is then shown: (1) trade coefficients can be endogenously derived from
the deterministic decision making of firms or households under the Armington Assumption and
(2) that the spatial price equilibrium condition can be obtained from the cost-minimization
behavior of transport firms. Finally, general equilibrium conditions of the entire system are
summarized. Definitions of all notations used in the formulations are given in Appendix A.

2.1 Basic Assumptions

(1) Numbers of regions and sectors: Three regions and two industrial sectors (non-transport
sector) are assumed.

2Developed by the World Trade Analysis Center in 1992. See http://www.gtap.agecon.purdue.edu/ for
details.

3Harker (1987) introduced transport firms and networks into the framework of Takayama and Judge (1971).
This made the SPE model a specific antecedent to development of the SCGE model.

4Due to the similar reason, Lofgren and Robinson (2002), Florenz (2005) and Ando and Meng (2009) use
perfect substitution assumption to avoid using the Armington assumption in their CGE models.

3



(2) Two factors of production: Two production factors of labor and physical capital are
considered; both of these are immobile across regions and sectors5.

(3) Three types of economic agents: General industrial sectors (non-transport firms), trans-
port firms and households are assumed.

(4) Transport demand: The demand for transport services is assumed to consist solely of
derived demand that accompanies purchases of other commodities6. Transport services
are supplied by the region of origin, and all transport costs are paid at origin.

(5) Final demand: Final demand is only from household expenditure, household disposable
income is equal to household consumption expenditure.

(6) Imperfect substitutes: Commodities produced in different regions are imperfect substi-
tutes for each other (Armington Assumption).

2.2 Behavior of Economic Agents

2.2.1 General Industries (Non-transport Firms)

The (aggregate) production function of sector j in region s combines the two factor inputs
of labor Ls

j and capital stock Ks
j of sector j in region s, with the intermediate inputs xrs

ij of
commodity i produced in region r as follows:

Xs
j = As

j

∏
i̸=3

(
∑
r

(xrs
ij )−ρs

ij)

αs
ij

−ρs
ij (Ls

j)
αs

Lj(Ks
j )

αs
Kj . (1)

The upper level of the production function uses a Cobb-Douglas type technology, and the lower
level for intermediate inputs from different regions employs a CES type technology. Xs

j denotes
the amount of output produced by industry j in region s, ρs

ij the substitution parameter7, and
As

j the scale parameter. The notation “3” represents the transport sector. The following is
assumed for the parameters αs

ij, αs
Kj and αs

Lj:

Assumption 1 The production function is linearly homogeneous for each region:∑
i ̸=3 αs

ij + αs
Lj + αs

Kj = 18.

As a whole, non-transport firms face the problem of choosing a combination of {xrs
ij , K

s
j , L

s
j} to

maximize their profits. This is described as follows:

πs
j = ps

jX
s
j −

∑
i ̸=3

∑
r

(pr
i + crs

i )xrs
ij − ωs

jL
s
j − γs

jK
s
j . (2)

5This assumption can be easily modified to facilitate mobile capital and (or) labor.
6For simplicity, transport services are considered as freight transport. Passenger transport is combined with

the “other services” sector.
7The elasticity of substitution can be written as follows: σs

ij = 1
1+ρs

ij
, where ρs

ij ≥ −1.

8According to Basic Assumption (4), transport services (i = 3) are not considered as an intermediate input.
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where ps
j is the producer’s (FOB) price of commodity j in region s, crs

i the transport cost for
shipping a unit commodity i from region r to s, and pr

i + crs
i the purchasing (CIF) price of

region s for the intermediate commodity i produced in region r. γs
j and ωs

j are respectively the
capital rent and wage rate.

One of the first-order conditions of equation (2) can be written as:

∂πs
j

∂xrs
ij

=
ps

jα
s
ijX

s
j (x

rs
ij )−ρs

ij

xrs
ij

∑
r(x

rs
ij )−ρs

ij
− (pr

i + crs
i ) = 0. (3)

According to the Chenery-Moses assumption, the intermediate input in physical terms may
be written as follows:

xrs
ij = ars

ij X
s
j = trs

i as
ijX

s
j , (4)

where ars
ij is the interregional input coefficient in physical terms. trs

i and as
ij are respectively

the regional trade coefficient and the regional input coefficient. Based on the above equation,
equation (3) can be then simplified to the following:

αs
ij =

∑
r(t

rs
i )−ρs

ij

ps
j

· trs
i (pr

i + crs
i )

(trs
i )−ρs

ij
· as

ij. (5)

The above solution for xrs
ij is available for any region r′. Thus, a similar result for xr′s

ij is
obtained:

αs
ij =

∑
r(t

rs
i )−ρs

ij

ps
j

· tr
′s

i (pr′
i + cr′s

i )

(tr
′s

i )−ρs
ij

· as
ij. (6)

Dividing (5) by (6) yields the following equation:

trs
i

tr
′s

i

=
( pr

i + crs
i

pr′
i + cr′s

i

) −1
1+ρs

ij . (7)

Summing both sides with r′ and using the condition
∑

r′ t
r′s
i = 1, trade coefficients can be

derived as follows:

trs
i =

(pr
i + crs

i )
−1

1+ρs
ij∑

r(p
r
i + crs

i )
−1

1+ρs
ij

. (8)

This form implies that trade coefficients depend on producer prices pr
i and transport costs crs

i .
This is very similar in form to a potential type function.

The total of intermediate inputs in production function (1) can also be considered as a
composite good Ds

ij, specifically

Ds
ij = (

∑
r

(xrs
ij )−ρs

ij)
− 1

ρs
ij . (9)

The profit function (2) may be rewritten as follows:

πs
j = ps

jX
s
j −

∑
i ̸=3

qs
i D

s
ij − γs

jK
s
j − ωs

jL
s
j , (10)
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where qs
i is considered to be the purchasing price index of composite good Ds

ij in region s.
First-order conditions to the profit-maximization problem of equation (10) may be written

as follows:

αs
ij =

qs
i D

s
ij

ps
jX

s
j

, αs
Lj =

ωs
jL

s
j

ps
jX

s
j

, and αs
Kj =

γs
jK

s
j

ps
jX

s
j

. (11)

The above parameters are simply the regional input coefficients measured in monetary terms.
Since the regional input coefficients in physical terms can be given as

as
ij =

Ds
ij

Xs
j

, as
Lj =

Ls
j

Xs
j

, and , as
Kj =

Ks
j

Xs
j

, (12)

the relationship between monetary and physical regional input coefficients can be written as
follows:

as
ij =

ps
j

qs
i

αs
ij , as

Lj =
ps

j

ωs
j

αs
Lj , and , as

Kj =
ps

j

γs
j

αs
Kj. (13)

Alternatively, according to Shephard’s duality, the composite price can be written in the
following form:

qs
i =

∑
r

(pr
i + crs

i )trs
i . (14)

This equation indicates that the composite price (market price) qs
i can be regarded as an

average value of CIF prices for a commodity i supplied from various regions weighted by a
trade coefficient (see Appendix B).

2.2.2 Households

The source of income for households is the gross regional domestic product V s comprising rent
and wage payments:

V s =
∑
j

ωs
jL

s
j +

∑
j

γs
jK

s
j , (15)

where regions are assumed to be closed in terms of factor income. For simplicity, firms and
their capital are considered to be owned by the households of the region where they are located.
Further, since tax and income transfer are ignored, household disposable income W s should
equal V s in the model.

The aggregate utility function of households in region s is considered to depend only on
yrs

i , the amount of commodity i produced in region r consumed in region s. The problem of
households is thus to choose {yrs

i } such that their utility is maximized:

Max
yrs

i

U s =
∏
i ̸=3

(
∑
r

(yrs
i )−δs

i )
βs

i
−δs

i , (16)

under the budget constraint

s . t.
∑
i̸=3

∑
r

(pr
i + crs

i )yrs
i = W s, (17)

where W s is the disposable income of households, δs
i ≥ −1 the substitution parameter, and βs

i

the final demand parameter.
Parallel to the production function, linear homogeneity of the utility function is assumed:
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Assumption 2 The utility function is linearly homogeneous,
∑

i̸=3 βs
i = 1 .

From the above first-order condition, the final demand parameter for yrs
i may be derived as

follows:

βs
i =

λs(pr
i + crs

i )
∑

r(y
rs
i )−δs

i

U s(yrs
i )−δs

i −1
. (18)

The same parameter for yr′s
i may be given as:

βs
i =

λs(pr′
i + cr′s

i )
∑

r(y
rs
i )−δs

i

U s(yr′s
i )−δs

i −1
. (19)

Dividing (18) by (19), the trade coefficient of final demand goods (trs
i(h) ) can be obtained:

trs
i(h) =

(pr
i + crs

i )
−1

1+δs
i∑

r(p
r
i + crs

i )
−1

1+δs
i

. (20)

The form of this trade coefficient is very similar to that in equation (8). For simplicity, the
following assumption is used in the model:

Assumption 3 Substitution parameters of general industries and households are dependent
only on their destinations and commodities. Both are equal to each other: ρs

ij = ρs
i and

δs
i = ρs

i .

Under the above assumption, a general trade coefficient which includes both intermediate
inputs and final demands emerges:

trs
i ≡ T rs

i∑
r T rs

i

=

∑
j xrs

ij + yrs
i∑

r(
∑

j xrs
ij + yrs

i )
=

(pr
i + crs

i )−σs
i∑

r(p
r
i + crs

i )−σs
i
. (21)

From this equation and the first-order condition, the composite consumption of commodity

i by households in region s (ys
i = (

∑
r(y

rs
i )−δs

i )
− 1

δs
i ) can be written as follows:

ys
i =

βs
i W

s

qs
i

. (22)

2.2.3 Transport Sector

Under Basic Assumption (4), all demands of this sector are derived from purchases of other
commodities. Non-transport firms can determine output levels to maximize their profits, but
transport firms are required to provide transport services needed to fulfill demands of other
commodities and services. Thus, they seek to minimize costs given the level of services.

For convenience, the following assumption concerning transport cost payments is introduced:

Assumption 4 Transport costs are paid at origin. This applies to purchases by the transport
sector itself. However, they do not recognize the imputed costs that accompany their own
purchases from the regions in which they are located9.

9Transport costs that accompany intra-regional purchases of transport sectors are paid to the transport
sectors themselves. Thus, they can be deducted from the total cost of producing the transport services required.
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Total transport demands originating in region s, in monetary terms, would be given by the
LHS of the following formula: ∑

i̸=3

∑
r

csr
i (

∑
j

xsr
ij + ysr

i ) = ps
3X

s
3 . (23)

Under Assumption 4, these demands would be fulfilled by transport firms in region s, and
their monetary output ps

3X
s
3 must exceed these demands. The cost to provide services required

may then be written as follows:

Cs
3 =

∑
i̸=3

∑
r ̸=s

(pr
i + crs

i )xrs
i3 +

∑
i̸=3

ps
ix

ss
i3 + ωs

3L
s
3 + γs

3K
s
3 . (24)

The production function of transport firms is also given by equation (1). The problem is
to choose {xrs

i3 , Ks
3 , Ls

3} so that the total cost (24) is minimized while satisfying transport
demands (23).

The first-order condition of intermediate inputs may be written with the Lagrange multiplier
µs associated with (23) as follows:

as
i3 =

µsps
3

qs
i

αs
i3 =

µsps
3

ps
i + µscss

i

αs
i3. (25)

The first expression represents purchases from other regions, xrs
i3 (r ̸= s). The second expression

is for intra-regional purchases. From the above equation, the relation between FOB and CIF
prices may be expressed as:

qs
i = ps

i + µscss
i . (26)

Finally, conditions for factor inputs can be written as follows:

as
K3 =

µsps
3

γs
3

αs
K3 and as

L3 =
µsps

3

ωs
3

αs
L3. (27)

2.3 Equilibrium Conditions

In this section, equilibrium conditions are summarized. Many are obtained by incorporating
first-order conditions of individual agents into the price and output equations of the interregional
input-output system.

2.3.1 Price Equations

Price equations correspond to column sums of the input-output table. Three different patterns
of equations must be prepared for non-transport and transport sectors as well as for final
demands. The equation for non-transport sectors may be written as follows:

ps
jX

s
j =

∑
i ̸=3

∑
r

pr
i t

rs
i as

ijX
s
j +

∑
i ̸=3

∑
r

crs
i trs

i as
ijX

s
j + ωs

ja
s
LjX

s
j + γs

ja
s
KjX

s
j . (28)

Using (13) to eliminate as
ij, and dividing both sides by ps

jX
s
j ,

1 =
∑
i̸=3

αs
ij

qs
i

∑
r

(pr
i + crs

i )trs
i + αs

Lj + αs
Kj. (29)
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According to the definition of market price qs
i (equation (14)), it is easy to see that the above

equation is simply Assumption 1 of linear homogeneity in general sectors.
A similar argument can be applied to final demand:

W s =
∑
i ̸=3

βs
i W

s

qs
i

∑
r

(pr
i + crs

i )trs
i . (30)

This equation is consistent with Assumption 2 , specifically
∑

i̸=3 βi = 1. Similarly the price
equation of transport sectors may be written as follows:

1

µs
=

∑
i̸=3

∑
r

(pr
i + crs

i )trs
i

qs
i

· αs
i3 + αs

L3 + αs
K3, (31)

where costs accompanying intra-regional purchases of its own are taken into account. µs = 1
must hold in order to comply with Assumption 1. Equation (26) can then be rewritten as
follows:

qs
i =

∑
r

(pr
i + crs

i )trs
i = ps

i + css
i . (32)

This is the only meaningful condition derived from the price equations.

2.3.2 Output Equations

Output equations correspond to row sums of the input-output table. Output levels for non-
transport sectors can be measured in physical units. Hence,

Xr
i =

∑
s

trs
i

ps
i + css

i

(
∑
j

αs
ijp

s
jX

s
j + βs

i W
s). (33)

For the special property of transport sectors defined in Basic Assumption 4, output level in
the transport sector can only be written in monetary terms:

pr
3X

r
3 =

∑
i̸=3

∑
s

crs
i trs

i

ps
i + css

i

(
∑
j

αs
ijp

s
jX

s
j + βs

i W
s). (34)

2.3.3 Factor Market and Final Demand

According to Basic Assumption 2 , capital rent and wage rate are determined as follows:

ωs
j = αs

Ljp
s
j

Xs
j

Ls
j

, (35)

and

γs
j = αs

Kjp
s
j

Xs
j

Ks
j

. (36)

The formula for the expenditure item can be summarized as follows:

W s =
∑
j

ωs
jL

s
j +

∑
j

γs
jK

s
j . (37)
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3 Simulation and Analysis

In this section, equilibrium conditions and variables used in the model are summarized. The
computational procedure applied for calculation of benchmark equilibriums is then explained.
Finally, the benchmark equilibrium solutions are used to evaluate in detail the relationships
among Armington elasticity, transport conditions and endogenous solutions of the model.

3.1 Equations, Variables, and Calculations

Equations describing equilibrium are summarized in Table 1. Since prices in transport sectors
cannot be distinguished from their quantities, their product (pr

3X
r
3) is considered to be an

independent variable. Variables and parameters of the system are summarized in Table 2.
There are 54 endogenous variables, and this is equal to the number of equilibrium conditions.

The model is composed of a system of nonlinear simultaneous equations. However, each
equation is not uniformly interconnected with other equations. Several blocks of equations
can be identified that are relatively independent from other blocks. Considering this structural
features of the equation system, the entire system may be divided into three blocks (see Table 1).
These include a trade coefficient block (T), a price block (P) and the block (X,W, ω, γ) for other
endogenous variables. Each block takes a nonlinear programming form to minimize the sum of
squared errors from relevant equilibrium conditions. The system solution constitutes a series
of convergence calculations using an iterative procedure based on a quasi-Newton algorithm.

It should be noted that interregional transport costs are considered exogenous to the model.
Actual transport costs crs

i , which are different among sectors, can be assumed to be proportional
to interregional time-distances drs: crs

i = ξid
rs. drs can be based on the shortest time paths

between pairs of regional geographical centers or capitals.

3.2 Results of Simulation

Three different benchmark equilibriums were calculated to test the impact of Armington elas-
ticity on trade coefficients, price system and other endogenous solutions in detail under given
transport conditions. Benchmark 1 represents an economic system in which the distribution
pattern of interregional transport costs is completely uniform. Benchmark 2 provides an econ-
omy in which the distribution pattern of transport costs is completely symmetric with relatively
low intra-regional transport costs. Benchmark 3 shows a non-symmetric economic system in
which transport cost between two selected regions are lower than other regions. These three
benchmark situations are compared under the following two scenarios: (1) Armington elastici-
ties are perfect substitutes (σs

i = ∞) and (2) Armington elasticities are imperfect substitutes.

3.2.1 Benchmark 1

The parameters and exogenous variables used in Benchmark 1 are shown below:
αs

ij = 0.25, ∀ i, j, s
αs

Lj = αs
Kj = 0.25 ∀j, s

βs
i = 0.50 ∀ i, s

Lj = Kj = 100.00 for j = 1, 2, L3 = K3 = 40
crs
i = 0.20 ∀ r, s, i (see Figure 1) .
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Table 1: Equilibrium Conditions

Equations Numbers Blocks

General Sectors: 3 × 2

Xr
i =

∑
s

trs
i

ps
i +css

i
(
∑

j αs
ijp

s
jX

s
j + βs

i W
s) eq.(33)

Transport Sectors: 3

pr
3X

r
3 =

∑
i̸=3

∑
s

crs
i trs

i

ps
i +css

i
(
∑

j αs
ijp

s
jX

s
j + βs

i W
s) eq.(34) X

Wage Rate: 3 × 2 + 3 W
ωs

j = αs
Ljp

s
jX

s
j /L

s
j eq.(35) ω

Capital Rent: 3 × 2 + 3 γ
γs

j = αs
Kjp

s
jX

s
j /K

s
j eq.(36)

Households: 3
W s =

∑
j ωs

jL
s
j +

∑
j γs

jK
s
j eq.(37)

Price System: 3 × 2
qs
i =

∑
r(p

r
i + crs

i )trs
i = ps

i + css
i eq.(32) P

Trade Coefficient: 3 × 2 × 3

trs
i =

(pr
i +crs

i )−σs
i∑

r
(pr

i +crs
i )

−σs
i

eq.(21) T

Subtotal: 54

Table 2: Variables and Parameters
Xr

i (3 × 2) , ps
3X

s
3 (3) ,

Endogenous Variables pr
i (3 × 2) , ωs

j (3 × 2 + 3) , γs
j (3 × 2 + 3),

and Subtotal W s (3) , trs
i (3 × 2 × 3) Subtotal: 54.

Exogenous Variables Ks
j , Ls

j , crs
i (crs

i = ξid
rs).

Parameters αs
ij , αs

Kj , αs
Lj , βs

i , σs
i , ξi .∑

i ̸=3 αs
ij + αs

Lj + αs
Kj = 1 ,

∑
i̸=3 βs

i = 1.
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Figure 1: crs
i in Benchmark 1

The endogenous variables for calculation of convergence are initialized with the following
values:
ps

i = 1.00, ∀i, s
Xs

j = 100.00, ∀j, s
From these conditions, it is easy to see that the given economy is a completely uniform

system. Here, the system is solved under the following two scenarios:
Scenario 1: σs

i = 10, ∀i, s
Scenario 2: σs

i = ∞, ∀i, s, where σs
i = 1/(1 + ρs

i )
The calculation results for Benchmark 1 are summarized in Table 3. Obviously, endogenous

solutions are also completely uniform under both scenarios. This means that the relationship
between Armington elasticity and model solutions is very robust when the distribution pattern
of interregional transport costs is completely uniform.

Table 3: Solutions of Endogenous Variables in Benchmark 1, (σs
i = 10 or ∞)

pr
i Xr

i pr
3X

r
3 ωr

i W r trs
i U r

i= 1 2 1 2 1 2 3 s= 1 2 3
r = 1 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3 2500
r = 2 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3 2500
r = 3 1.00 1.00 100 100 40 0.25 0.25 0.25 120 1/3 1/3 1/3 2500

3.2.2 Benchmark 2

Benchmark 2 presents a relatively real situation in which the interregional transport costs are
changed as follows:
crs
i = 0.20 ∀ i, when r ̸= s,

crr
i = 0.10 ∀ r, i (see Figure 2) .

Other initialization conditions are the same as those in Benchmark 1.
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Figure 2: crs
i in Benchmark 2

The calculation results for Benchmark 2 under Scenario 1 and 2 are summarized in Table
4 and 5 respectively. Both give completely symmetric solutions. Specifically, comparing with
those for Benchmark 1 under Scenario 1, the elasticities of substitution are 10; the outputs
of non-transport sectors, regional utilities, and factor prices in non-transport sectors for each
region go up. This means that the reduction of intraregional transport costs has a positive effect
on outputs of non-transport sectors, regional utilities, and factor prices. However, this directly
decreases the revenue of the transport sector, thus, output and labor wages in transport sector
seem to be damaged. Conversely, relatively lower intraregional transport costs have a positive
impact on intraregional trade coefficients. This is easily understood since the reduction of
intraregional transport costs will lower production costs inside the region. Firms and households
can then enjoy relatively low CIF prices inside the region. As an extreme case, when Armington
elasticity approaches to an infinite value, the economic system develops an autarkic pattern for
each region. This means that when intermediate inputs can be perfectly substituted with each
other among regions, every region will simply import goods and services from its own region
since CIF prices inside the region are the lowest.

Table 4: Solutions of Endogenous Variables in Benchmark 2, (σs
i = 10)

pr
i Xr

i pr
3X

r
3 ωr

i W r trs
i U r

i=1 , 2 1 , 2 1 , 2 3 s=1 2 3
r = 1 1.00 101.57 ↑ 27.37 ↓ 0.254↑ 0.17 ↓ 115.25 ↓ 0.54↑ 0.23↓ 0.23↓ 2744↑
r = 2 1.00 101.57 ↑ 27.37 ↓ 0.254↑ 0.17 ↓ 115.25 ↓ 0.23↓ 0.54↑ 0.23↓ 2744↑
r = 3 1.00 101.57 ↑ 27.37 ↓ 0.254↑ 0.17 ↓ 115.25 ↓ 0.23↓ 0.23↓ 0.54↑ 2744↑

3.2.3 Benchmark 3

Compared with Benchmarks 1 and 2, Benchmark 3 has initial economic conditions that are non-
uniform and non-symmetric. The transport costs of Commodity 1 from Region 1 to Region 2

13



Table 5: Solutions of Endogenous Variables in Benchmark 2, (σs
i = ∞)

pr
i Xr

i pr
3X

r
3 ωr

i W r trs
i U r

i=1 , 2 1 , 2 1 , 2 3 s=1 2 3
r = 1 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 1.00↑ 0 ↓ 0↓ 2600↑
r = 2 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 0↓ 1.00↑ 0↓ 2600↑
r = 3 1.00 101.95 ↑ 20.47 ↓ 0.26↑ 0.13 ↓ 112.18 ↓ 0↓ 0 ↓ 1.00↑ 2600↑

decrease from 0.2 to 0.15. This not only provides a check of the impact of Armington elasticity
on model solutions but also helps to simulate the impact of transport cost reduction for a
selected pair of regions on the whole economy. Interregional transport costs for Benchmark 3
are as follows:
crs
i = 0.20 ∀ i, when r ̸= s,

crr
i = 0.10 ∀ r, i

c12
1 = 0.15 (see Figure 3).
Other initialization conditions are the same as those in Benchmark 2. 
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Figure 3: crs
i in Benchmark 3

The calculation results of Benchmark 3 under Scenarios 1 and 2 are shown in Tables 6
and 7 respectively. Obviously, under the non-symmetric distribution pattern of interregional
transport costs, equilibrium solutions yield a non-symmetric image. Under Scenario 1, the
prices of Commodity 1 for Regions 1 and 2 are reduced because the interregional transport
cost for Commodity 1 from Region 1 to Region 2 lowers CIF prices in both Region 1 and
Region 2. Comparing decreasing CIF prices in these two regions, the CIF price in Region 3
inevitably becomes relatively high. This high price will have a negative impact on the output
of Commodity 1 in Region 3, since high prices result in low demand. It should be noted that
the output of Commodity 2 in Region 1 and 2 also produces negative effects. This is because
the relatively lower CIF price of Commodity 1 in Regions 1 and 2 will boost the demand for
Commodity 1 produced in these regions to satisfy the increased demand. Non-transport firms
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in these regions must transfer resources originally used for the production of Commodity 2. As
a result, outputs of Commodity 2 in both regions decline. The pattern of trade coefficients also
becomes non-symmetric. Compared with Benchmark 2, every region tends to import relatively
more of Commodity 1 from Regions 1 and 2. This also results from the reduction of transport
costs between Region 1 and Region 2. However, when Armington elasticity approaches infinity,
the economic system becomes autarkic for each region as in the solution of Benchmark 2. This
means that when intermediate inputs are perfectly substituted for each other among regions,
every region will simply import goods and services from their own region, even if the initial
condition is non-symmetric.

Table 6: Solutions of Endogenous Variables in Benchmark 3, (σs
i = 10)

pr
i Xr

i pr
3X

r
3 ωr

i W r trs
1 U r

i=1 2 1 2 1 2 3 s=1 2 3
r = 1 0.99 1.00 112.13 97.91 23.26 0.28 0.26 0.15 116.15 0.56 0.29 0.27 2811
r = 2 0.97 1.00 115.00 96.36 24.18 0.28 0.24 0.15 115.85 0.29 0.58 0.33 2850
r = 3 1.04 1.00 71.27 103.72 22.61 0.17 0.26 0.14 100.31 0.15 0.13 0.41 2006

Table 7: Solutions of Endogenous Variables in Benchmark 3, (σs
i = ∞)

pr
i Xr

i pr
3X

r
3 ωr

i W r trs
1 U r

i=1 2 1 2 1 2 3 s=1 2 3
r = 1 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 1.00 0 0 2600
r = 2 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 0 1.00 0 2600
r = 3 1.00 1.00 101.95 101.95 20.46 0.26 0.26 0.13 112.18 0 0 1.00 2600

Summarizing, if elasticity of substitution is set at an infinite value, only two solution patterns
can be obtained: (1) a completely symmetric regional economic structure and (2) complete
autarkic regional economies. For details of other calculation results, refer to Appendix C.

3.2.4 Sensitivity Check of Armington Elasticity

Using the parameters of Benchmark 2, a sensitivity test was conducted to show how the change
of Armington elasticity may affect the price equilibrium system and trade coefficients under
given transport conditions. Armington elasticity σ1

2 is the target parameter tested. Other
elasticities were set as follows: σs

i = 2.0, ∀s ̸= 1, i ̸= 2.
Figures 4 and 5 show results of the sensitivity check of Armington elasticity on price system

and trade coefficients respectively. Obviously, a change in σ1
2 does not affect the price and

trade coefficient of Commodity 1 since the elasticity between Commodity 1 and Commodity 2
equals 1 (see production function (1)). However, the price and trade coefficients of Commodity
2 show a changing pattern that is very sensitive and non-linear. This implies that Armington
elasticity should be given carefully since it is not robust enough to be given arbitrarily.
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Figure 4: Sensitivity Check of Armington Elasticity on the Price Equilibrium System

Figure 5: Sensitivity Check of Armington Elasticity on Trade Coefficients
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4 Conclusion

The Armington Assumption takes products with the same name and coming from different
countries of origin to be imperfect substitutes for each other. This assumption has been widely
used in existing CGE models. To investigate in detail the impact of this assumption on a
spatial price equilibrium system, trade coefficients and other model solutions, a 3-region, 2-
commodity simple spatial CGE model was formulated with explicit consideration of transport
sector and regional price differentials. With the Armington Assumption, the model shows
that trade coefficients can be endogenously derived from rational and deterministic decision
making of firms or households. Using this trade coefficient, model solutions show that: (1)
if commodities produced in different regions are perfect substitutes, the regional economies
will become autarkic or develop a complete symmetric pattern and (2) if they are imperfect
substitutes, the impact of elasticity on the price equilibrium system and trade coefficients is
nonlinear and sometimes very sensitive.
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Appendix A: Symbols in the Paper

Table A.1: Symbols in the Paper

Symbols Definitions

Xs
j production of industry j in egion s

xrs
ij interregional input of good i from region r to region s, used in industry j

Ds
ij composite intermediate input goods i of industry j in region s

Ls
j labor input of industry j in region s

Ks
j capital input of industry j in region s

πs
j profit of industry j in region s

ps
j FOB price of good j produced in region s

qs
i CIF price of good i used in region s

crs
i transport cost for shipping goods i from region r to region s

U s utility of households in region s
yrs

i households’ consumption of region s for good i produced in region r
ys

i composite final consumption of good i in region s
W s income of households in region s
As

j scale parameter in production function
ρs

ij substitution parameter used in production function
αs

ij regional input coefficient of intermediate goods, measured in monetary terms
αs

Lj regional input coefficient of labor, measured in monetary terms
αs

Kj regional input coefficient of capital, measured in monetary terms
ωs

j wage rate of industry j in region s
γs

j capital rent of industry j in region s
as

ij regional input coefficient of intermediate goods, measured in physical terms
trs
i trade coefficient (physical term)
δs
i substitution parameter used in utility function s

βs
i final demand parameter (monetary term)

σs
i parameter representing the elasticity of substitution s
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Appendix B: Alternate Derivation of Trade Coefficients

In modern microeconomics, it is well known that a duality exists between production function
and cost function. According to “Shephard’s duality”, the unit cost function can be represented
as follows:

ps
j =

∏
i

[
1

αij

(∑
r

(pr
i + crs

i )
ρi

1+ρi

) 1+ρi
ρi

]αij
[ γs

j

αs
Kj

]αs
Kj

[ ωs
j

αs
Lj

]αs
Lj

. (B.1)

Shephard’s lemma was used in this paper to produce the unit demand function for input xrs
ij

shown below. This theoretically equals the interregional input-output coefficient.

∂ps
j

∂(pr
i + crs

i )
=

αijp
s
j

pr
i + crs

i

(pr
i + crs

i )
ρi

1+ρi∑
r(p

r
i + crs

i )
ρi

1+ρi

= ars
ij (B.2)

Using equations (4) and (13) and arranging the above equation,

trs
i =

qs
i

pr
i + crs

i

(pr
i + crs

i )
ρi

1+ρi∑
r(p

r
i + crs

i )
ρi

1+ρi

. (B.3)

Moving the term pr
i + crs

i to the left side and computing
∑

r for both sides,

qs
i =

∑
r

(pr
i + crs

i )trs
i . (B.4)

This implies that the purchasing price index can be considered as an average value of purchasing
prices weighted by trade coefficients. Since

∑
r trs

i = 1, summarizing both sides of (B.3) by r, a
different expression of purchasing prices indices is obtained as follows:

qs
i =

∑
r(p

r
i + crs

i )
ρi

1+ρi∑
r(p

r
i + crs

i )
− 1

1+ρi

. (B.5)

Substituting the above equation into equation (B.3) to calculate trs
i results in the followings

trs
i =

(pr
i + crs

i )
− 1

1+ρi∑
r(p

r
i + crs

i )
− 1

1+ρi

.

This is the same as earlier equation (8).
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Appendix C: Results of Simulation

Table C.1: xrs
ij in Physical Terms for Benchmark 2,(σs

i = 10)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 12.56 12.56 3.36 5.26 5.26 1.42 5.26 5.26 1.42

1 2 12.56 12.56 3.36 5.26 5.26 1.42 5.26 5.26 1.42
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42

2 2 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56 3.86

3 2 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56 3.86
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.2: yrs
i in Physical Terms for Benchmark 2,(σs

i = 10)

yrs
i 1 2 3

1 28.51 11.94 11.94
1 2 28.51 11.94 11.94

3 0.00 0.00 0.00
1 11.94 28.51 11.94

2 2 11.94 28.51 11.94
3 0.00 0.00 0.00
1 11.94 11.94 28.51

3 2 11.94 11.94 28.51
3 0.00 0.00 0.00
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Table C.3: xrs
ij in FOB Prices for Benchmark 2,(σs

i = 10)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 12.56 12.56 3.39 5.26 5.26 1.42 5.26 5.26 1.42

1 2 12.56 12.56 3.39 5.26 5.26 1.42 5.26 5.26 1.42
3 5.29 5.29 1.79 4.88 4.88 1.68 4.88 4.88 1.68
1 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42

2 2 5.26 5.26 1.42 12.56 12.56 3.39 5.26 5.26 1.42
3 4.88 4.88 1.69 5.29 5.29 1.79 4.88 4.88 1.69
1 5.26 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56

3 2 5.26 5.26 5.26 1.42 5.26 5.26 1.42 12.56 12.56
3 4.88 4.88 1.69 4.88 4.88 1.68 5.29 5.29 1.79

Table C.4: yrs
i in FOB Prices for Benchmark 2,(σs

i = 10)

yrs
i 1 2 3

1 28.51 11.94 11.94
1 2 28.51 11.94 11.94

3 12.39 11.44 11.44
1 11.94 28.51 11.94

2 2 11.94 28.51 11.94
3 11.44 12.39 11.44
1 11.94 11.94 28.51

3 2 11.94 11.94 28.51
3 11.44 11.44 12.39

Table C.5: xrs
ij in Physical Terms for Benchmark 2,(σs

i = ∞)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table C.6: yrs
i in Physical Terms for Benchmark 2,(σs

i = ∞)

yrs
i 1 2 3

1 50.99 0.00 0.00
1 2 50.99 0.00 0.00

3 0.00 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 0.00 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 0.00

Table C.7: xrs
ij in FOB Prices for Benchmark 2,(σs

i = ∞)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 9.27 9.27 1.86 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00
3 0.00 0.00 0.00 9.27 9.27 9.27 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 9.27 9.27 1.86

Table C.8: yrs
i in FOB Prices for Benchmark 2,(σs

i = ∞)

yrs
i 1 2 3

1 50.99 0.00 0.00
1 2 50.99 0.00 0.00

3 20.40 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 20.40 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 20.40

22



Table C.9: xrs
ij in Physical Terms for Benchmark 3,(σs

i = 10)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 14.42 12.71 3.02 7.85 6.80 1.71 4.40 6.14 1.34

1 2 13.74 12.11 2.88 5.76 4.99 1.25 3.85 5.37 1.71
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 7.14 6.29 1.50 14.89 12.90 3.24 5.24 7.32 1.60

2 2 5.76 5.07 1.21 13.75 11.92 3.00 3.85 5.37 1.17
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3.90 3.44 0.82 3.32 2.88 0.72 6.62 9.25 2.02

3 2 5.76 5.07 1.21 5.76 5.00 1.25 9.19 12.83 2.80
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.10: yrs
i in Physical Terms for Benchmark 3,(σs

i = 10)

yrs
i 1 2 3

1 30.15 16.36 11.87
1 2 28.73 12.00 10.39

3 0.00 0.00 0.00
1 14.93 31.03 14.15

2 2 12.03 28.65 10.40
3 0.00 0.00 0.00
1 8.15 6.93 17.89

3 2 12.03 12.00 24.81
3 0.00 0.00 0.00

Table C.11: xrs
ij in FOB Prices for Benchmark 3,(σs

i = 10)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 14.30 12.60 2.99 7.78 6.74 1.70 4.36 6.08 1.33

1 2 13.74 12.11 2.88 5.76 4.99 1.25 3.85 5.37 1.17
3 5.59 5.26 1.70 5.12 4.80 1.62 4.43 5.08 1.61
1 6.90 6.08 1.44 14.39 12.47 3.13 5.06 7.07 1.54

2 2 5.76 5.07 1.21 13.75 11.92 2.99 3.85 5.37 1.71
3 5.36 5.05 1.65 5.64 5.26 1.73 4.60 5.32 1.66
1 4.06 3.58 0.85 3.46 3.00 0.75 6.90 9.64 2.10

3 2 5.76 5.07 1.21 5.76 4.99 1.25 9.17 12.83 2.80
3 4.71 4.48 1.52 4.59 4.35 1.51 4.36 4.99 1.59
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Table C.12: yrs
i in FOB Prices for Benchmark 3,(σs

i = 10)

yrs
i 1 2 3

1 29.88 16.21 11.77
1 2 28.73 12.00 10.39

3 12.55 11.52 11.12
1 14.43 29.99 13.68

2 2 12.03 28.65 10.39
3 12.06 12.64 11.58
1 8.49 7.22 18.64

3 2 12.03 12.00 24.81
3 10.70 10.45 10.94

Table C.13: xrs
ij in Physical Terms for Benchmark 3,(σs

i = ∞)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 4.65 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table C.14: yrs
i in Physical Terms for Benchmark 3,(σs

i = ∞)

yrs
i 1 2 3

1 50.99 0.00 0.00
1 2 50.99 0.00 0.00

3 0.00 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 0.00 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 0.00
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Table C.15: xrs
ij in FOB Prices for Benchmark 3,(σs

i = ∞)

xrs
ij 1 2 3

1 2 3 1 2 3 1 2 3
1 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00

1 2 23.17 23.17 4.65 0.00 0.00 0.00 0.00 0.00 0.00
3 9.27 9.27 1.86 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00

2 2 0.00 0.00 0.00 23.17 23.17 23.17 0.00 0.00 0.00
3 0.00 0.00 0.00 9.27 9.27 9.27 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65

3 2 0.00 0.00 0.00 0.00 0.00 0.00 23.17 23.17 4.65
3 0.00 0.00 0.00 0.00 0.00 0.00 9.27 9.27 1.86

Table C.16: yrs
i in FOB Prices for Benchmark 3,(σs

i = ∞)

yrs
i 1 2 3

1 50.99 0.00 0.00
1 2 50.99 0.00 0.00

3 20.40 0.00 0.00
1 0.00 50.99 0.00

2 2 0.00 50.99 0.00
3 0.00 20.40 0.00
1 0.00 0.00 50.99

3 2 0.00 0.00 50.99
3 0.00 0.00 20.40
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