
INSTITUTE OF DEVELOPING ECONOMIES 

  
IDE Discussion Papers are preliminary materials circulated  
to stimulate discussions and critical comments 

      
 
 
 

 

IDE DISCUSSION PAPER No. 278 

Skill Sorting, Inter-Industry Skill Wage 
Premium, and Production Chains: 
Evidence from India 1999-2000 

Yoko ASUYAMA* 
 
February 2011 

 
Abstract  
This paper proposes a mechanism that links industry’s technological characteristics (i.e. quality 
of non-labor inputs, which is proxied by the length of industry production chains), 
industry-specific skill wage premium, and skill sorting across industries. It is hypothesized that 
high-skilled workers are sorted into industries where they can receive a higher skill wage 
premium, by working with better quality non-labor input. The quality of non-labor inputs is 
assumed to be worse in industries with longer production chains due to the increased 
involvement of low-skilled labor and poor infrastructure over the sequential production. By 
examining Indian wage and employment data for 1999-2000, empirical evidence to support this 
mechanism can be obtained: First, the skill wage premium is lower [higher] in industries with 
longer [shorter] production chains. Second, the skill wage premium is lower [higher] in 
industries with a higher [lower] proportion of low-skilled workers producing inputs outside their 
own industry. Third, the proportion of high-skilled workers is larger in industries with shorter 
production chains and lower ratio of low-skilled labor involved, i.e., a skill sorting trend can be 
observed. 
 
Keywords: India, Industry wage, Production chains, Sequential production, Skill wage 
premium, Skill sorting 
 
JEL classification: J24, J31 

                                                  
* Poverty Alleviation and Social Development Studies Group, Inter-disciplinary Studies Center, IDE 
(Yoko_Asuyama@ide.go.jp)  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The Institute of Developing Economies (IDE) is a semigovernmental, 

nonpartisan, nonprofit research institute, founded in 1958. The Institute 

merged with the Japan External Trade Organization (JETRO) on July 1, 1998.  

The Institute conducts basic and comprehensive studies on economic and 

related affairs in all developing countries and regions, including Asia, the 

Middle East, Africa, Latin America, Oceania, and Eastern Europe. 
 
 
The views expressed in this publication are those of the author(s).  Publication does 
not imply endorsement by the Institute of Developing Economies of any of the views 
expressed within. 
 

INSTITUTE OF DEVELOPING ECONOMIES (IDE), JETRO 
3-2-2, WAKABA, MIHAMA-KU, CHIBA-SHI 
CHIBA 261-8545, JAPAN 
 
©2011 by Institute of Developing Economies, JETRO 
No part of this publication may be reproduced without the prior permission of the 
IDE-JETRO. 



Skill Sorting, Inter-Industry Skill Wage Premium, and Production Chains: 

Evidence from India 1999-2000 

 

Yoko Asuyama* 

 

 

February 2011 

(Preliminary) 

 

Abstract 
This paper proposes a mechanism that links industry’s technological characteristics (i.e. 
quality of non-labor inputs, which is proxied by the length of industry production 
chains), industry-specific skill wage premium, and skill sorting across industries. It is 
hypothesized that high-skilled workers are sorted into industries where they can receive 
a higher skill wage premium, by working with better quality non-labor input. The 
quality of non-labor inputs is assumed to be worse in industries with longer production 
chains due to the increased involvement of low-skilled labor and poor infrastructure 
over the sequential production. By examining Indian wage and employment data for 
1999-2000, empirical evidence to support this mechanism can be obtained: First, the 
skill wage premium is lower [higher] in industries with longer [shorter] production 
chains. Second, the skill wage premium is lower [higher] in industries with a higher 
[lower] proportion of low-skilled workers producing inputs outside their own industry. 
Third, the proportion of high-skilled workers is larger in industries with shorter 
production chains and lower ratio of low-skilled labor involved, i.e., a skill sorting trend 
can be observed. 
 
Keywords: India, Industry wage, Production chains, Sequential production, Skill wage 
premium, Skill sorting 
 
JEL codes: J24, J31 
 

                                                  
* Poverty Alleviation and Social Development Studies Group, Inter-disciplinary Studies Center, 
Institute of Developing Economies, Japan External Trade Organization (IDE-JETRO) 
(Yoko_Asuyama@ide.go.jp) 

1 
 



1. Introduction 

The pattern of skill distribution varies significantly across industries. For 

instance, Figure 1, which presents the educational attainment of workers across 42 

industries in India in 1999-2000, supports this claim. Why do we observe different skill 

distribution patterns across industries? By utilizing Indian household survey data, this 

paper aims to empirically answer this question by examining the linkage among 

industry technological characteristics, industry-specific skill wage premium, and skill 

distribution patterns across industries. It is hypothesized that the length of industry 

production chains and the proportion of low-skilled workers involved across the chains 

are both negatively correlated with industry-specific skill wage premium. This is 

because as the length of production chains becomes longer, the negative effects on 

non-labor input quality caused by either low-skilled workers or poor infrastructure 

accumulate and become larger. The larger proportion of low-skilled workers involved in 

the chains further magnifies the damage accumulation. Then, it is assumed that the 

wages of high-skilled workers are dragged down more (i.e. skill wage premium is 

relatively low) in industries where non-labor input quality is worse due to defect 

accumulation. In consequence, high-skilled workers tend to be sorted into industries 

where they can enjoy higher skill wage premium by being matched with high-quality 

non-labor input.  

The main contribution of this paper is to propose another factor (in particular, 

the length of industry production chains which is a proxy for the quality of non-labor 

inputs) that explains the inter-industry wage differentials (inter-industry differences in 

skill wage premium, in particular) and the different patterns of skill allocation across 

industries. To my knowledge, none of the previous studies have proposed this 

mechanism. Although a formal economic model is not presented in the current paper 

and constructing it is left for future research, this paper provides empirical evidence to 

support the proposed mechanism.  
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The idea of this paper is closely related with that of Sampson (2011), which 

develops an assignment model of skill across sectors. In his model, high-skilled workers 

are sorted into industries which utilize non-labor inputs with higher productivity so that 

they can best leverage their talent. He also empirically confirms that falls in the price of 

capital (i.e. productivity increase of non-labor input) utilized by the industry positively 

affect the growth in industry average wage, which is a proxy for industry skill level. The 

current paper differs from his paper in three ways: First, his model assumes that 

production function is log-submodular exhibiting substitutability between labor and 

non-labor inputs, and quantity of non-labor inputs is endogenously chosen so that 

high-skilled workers can best utilize their ability by working with larger quantities of 

non-labor inputs. In contrast, I assume that the production function exhibits 

complementarity between labor and non-labor inputs, and each worker must work with 

the same quantity of non-labor inputs of different quality levels (or quality-adjusted 

productivity levels).1 Second, Sampson (2011) assumes that productivity of non-labor 

input changes due to exogenous technological progress. By contrast, I assume that 

quality-adjusted productivity of non-labor input is determined by the length of 

production chains and the degree of low-skilled labor’s involvement, assuming defect 

accumulation over sequential production. Finally, Sampson (2011) empirically 

examines the relationship between productivity of non-labor input and skill sorting by 

utilizing the industry average wage data assuming that they proxy industry skill level. 

This proximity is somewhat crude, as Sampson himself already recognizes. By utilizing 

within-industry data on workers’ skill distribution, the current paper links non-labor 

input quality and skill sorting across industries by empirically examining the association 

between non-labor input quality and industry-specific skill wage premium.  

This paper also contributes to the literature on industry wage premium. As 

                                                  
1 In his paper, Sampson indicates that if the production function is supermodular, which exhibits 
complementarity, and the quantity ratio between labor and non-labor inputs is fixed, positive 
assortative matching between high-skilled labor and high-quality non-labor inputs would occur, as 
hypothesized in the current paper. 
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Dickens and Katz (1987) compactly summarizes, previous studies try to explain the 

reason for the persistent inter-industry wage differences, which still remain after 

controlling observable individual characteristics, based on either competitive or 

non-competitive labor market models. From the competitive labor market model, the 

difference in industry wage premium is explained either by the variation in unobserved 

worker ability (Murphy and Topel 1987; Keane 1993; Abowd et al. 1999; Goux and 

Maurin 1999; Carruth et al. 2004), or by the differences in unobserved working 

conditions across industries. 2  From the non-competitive labor market model, the 

inter-industry wage differentials are explained by the efficiency wage model (Krueger 

and Summers 1988), the union-threat model (Dickens 1986), and the degree of trade 

protection/liberalization (Pavcnik et al. 2004; Goldberg and Pavcnik 2005; Dutta 2007; 

Lundin and Yun 2009). Part of the inter-industry wage differentials can also be 

explained by the different returns to skill across industries. For example, Robbins and 

Minowa (1996) and Pavcnik et al. (2004) find substantial variation in skill wage 

premium across industries in Brazil. Those papers claim that the returns to schooling 

can vary across industries either because workers with different education level might 

differ in the degree of labor market mobility, monitoring costs in the efficiency wage 

models, accumulation of industry-specific skills, or ability to bargain over wages. By 

contrast, my focus in this paper is on explaining the inter-industry skill wage 

differentials by the different quality of non-labor inputs which is proxied by the length 

of industry production chains.  

This paper also contributes to providing a presumable mechanism that explains 

the empirical evidence presented by Asuyama (2011). Asuyama (2011) empirically finds 

that a country with higher [lower] skill dispersion such as India [China] has higher 

exports in industries with shorter [longer] production chains, although the mechanism 

behind this is not empirically examined. The empirical findings of this paper function as 

                                                  
2  Murphy and Topel (1987) examine the association between the employment and earnings 
variability of the job and the inter-industry wage differentials, although they find little association.  
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favorable evidence for the skill sorting hypothesis rather than for the random matching 

hypothesis, both of which are considered possible in Asuyama (2011).  

The rest of the paper is organized as follows. Section 2 presents three 

hypotheses to be empirically tested in this paper and explains the skill sorting 

mechanism across industries. Section 3 explains the empirical strategy. Section 4 

describes the data, and explains the construction of the key variables. Section 5 presents 

the estimation results. Section 6 concludes.  

 

2. Hypotheses and Skill Sorting Mechanism 

 This paper empirically tests the following three hypotheses.  

Hypothesis 1. The skill wage premium is lower [higher] in industries with longer 

[shorter] production chains. 

Hypothesis 2. The skill wage premium is lower [higher] in industries with higher 

[lower] proportion of low-skilled workers who are engaged in production across 

the chains. 

Hypothesis 3. The proportion of high-skilled workers is larger in industries which 

pay higher skill premium, i.e. industries with shorter production chains and lower 

ratio of low-skilled workers involved across the chains (i.e., skill sorting trend). 

 The above hypotheses are derived based on the assumption that as the length of 

industry production chains becomes longer (or the number of production stages 

involved in order to produce final industry output increases), the quality of 

semi-finished intermediate input utilized by the industry tends to be worse because the 

involvement of low-skilled workers or poor-quality infrastructure (e.g. power and 

transportation) increases with the number of production stages. As in the O-ring 

production function proposed by Kremer (1993), the negative impact on the quality of 

intermediate input at each stage accumulates more as the length of production chains 

becomes longer. Clearly, the more low-skilled workers are involved across the chains, 

5 
 



the larger the accumulated negative effects on the quality of semi-finished intermediate 

input utilized by the industry become. It follows that high-skilled workers have more 

incentives to be sorted into industries with shorter production chains, where they can 

work with high-quality non-labor input. This is because I assume complementarity 

between labor and non-labor inputs, and thus marginal product and wage of high-skilled 

labor are dragged down more when working with low-quality non-labor inputs. In other 

words, since skill-wage premium is larger in industries which utilize higher-quality 

non-labor input, i.e. industries with shorter production chains and lower proportion of 

low-skilled workers involved, high-skilled workers are sorted into those industries.  

This sorting mechanism is similar to that of Grossman (2004), where 

high-skilled workers are sorted into industries (e.g. software) in which an individual’s 

contribution to the firm output can be measured perfectly and wages are paid according 

to their own productivity. In his model, high-skilled workers are disinclined to enter the 

industry characterized by team-production (e.g. automobile industry) in which each 

worker’s contribution to the output is measured only imperfectly due to imperfect labor 

contracts. This is because the wages of high-skilled workers are dragged down by the 

low-skilled team members and become lower than the counterparts in the software 

industry. Instead of the imperfect labor contract, in the current paper the quality of 

non-labor semi-finished intermediate input depresses skill-wage premium.  

Finally, it is assumed that inter-industry labor mobility is costly so that perfect 

skill sorting does not occur in reality. In consequence, one can simultaneously observe 

inter-industry skill wage differentials on one hand and skill-sorting trend on the other 

hand. In fact, as illustrated in Figure 1, in India each industry employs both low- and 

high-skilled workers, although their ratio differs substantially. The inter-industry labor 

mobility also seems low in the Indian sample in this study. Only 1.0% of the Indian 

workers (male, aged 15-65, full-time, regular wage/salaried workers examined in the 

empirical analysis) changed their industry (in terms of two-digit NIC-1998 level) during 
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the two years before the date of survey.3 

 

3. Empirical Strategy 

In order to test Hypothesis 1, I estimate the following equation:  

ijijiij ZXEduLeontiefEduWage εδγβα ++++= **ln 1 , (1) 

where denotes the logarithm of wage of individual i in industry j; 

is an interaction term between , which is the skill level of 

individual i (estimated years of education in the current paper), and , which 

indicates the length of production chains in industry j; denotes interaction 

terms between  and other industry- or individual-specific variables; Z consists of 

a set of individual characteristics including industry affiliation dummies. The industry 

affiliation dummies absorb all the average impact of industry affiliation on wages, 

which is explicitly decomposed into various factors in the previous studies on the 

industry-wage premium. In this paper, my focus is on

ijWageln

jLeontiefiEdu * iEdu

1

jLeontief

XEdui *

iEdu

β , which captures the extent to 

which skill wage premium varies according to the length of the industry’s production 

chains. If the estimated coefficient 1β  is significantly negative, it supports Hypothesis 

1.  

 Second, in order to test Hypothesis 2, an interaction term, s 

added to equation (1) as follows: 

ji LowEduEdu *  i

ijijijiij ZXEduLowEduEduLeontiefEduWage εδγββα ′+′+′+′+′+′= ***ln 21 , (2) 

where represents the proportion of low-skilled workers who are involved in 

production activities across the production chains of industry j. If both Hypotheses 1 

and 2 are correct, we can expect that both 

jLowEdu

1β ′  and 2β ′  turn out to be negative.  

 Finally, Hypothesis 3 is simply tested by the following equation:  

jjjj LowEduLeontiefHighEdu εββα ′′+′′+′′+′′= 21 , (3) 

where indicates the proportion of high-skilled workers working within jHighEdu

                                                  
3 There are 60 industry categories based on two-digit NIC-1998 code. 
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industry j. Hypothesis 3 is confirmed when the estimated coefficients 1β ′′  and 2β ′′ are 

both negative. 

 

4. Data 

This section summarizes the data used in the empirical analysis. More detailed 

explanations on data are provided in Appendix I.  

It is expected that as the spread of workers’ skills becomes greater, negative 

impacts on non-labor input quality caused by low-skilled workers become larger and 

high-skilled workers have more incentives to be sorted into industries with shorter 

production chains. Thus, stronger evidence to confirm the three hypotheses can be 

found by examining a country with a greater spread of skill. As such a country, I choose 

India. Skill distribution in India is characterized by a large number of illiterate 

populations and relatively large proportion of highly-educated individuals. As of 

2004/05, the share of employed people who were illiterate or had only education below 

the primary level was 50%, while that of upper secondary and post-secondary education 

was 21% (15% and 6%, respectively). India’s skill distribution is very unequal 

compared with other developing countries, such as China, where the proportion of 

workers who had received no schooling and those with post-lower secondary education 

was 8% and 19% respectively in 2005.4  

Data on wage, education level, and other individual characteristics are 

extracted from the unit-level data of the Employment and Unemployment schedule of 

the National Sample Survey conducted in 1999-2000 (NSS 1999). The NSS 1999 

covers 165,244 households with 819,013 persons across India. As Kijima (2006) states, 

the Employment and Unemployment schedule of the NSS is the only survey which 

collects information on individual’s earnings and characteristics for the entire country 

                                                  
4 Figures on workers’ skill distribution of India and China are computed from NSSO, Unit-level 
data of National Sample Survey (NSS), Employment and Unemployment schedule, 2004-05, and 
China’s 2005 National 1% Population Sample Survey (SC and NBS, 2007). India’s figures are 
computed based on the usual principal activity status. 
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through stratified random sampling procedure. The Employment and Unemployment 

schedule of the NSS was also conducted in 1972-73, 1977-78, 1983, 1987-88, 1993-94, 

and 2004-05. However, for the preliminary analysis conducted here, only 1999 data are 

used.5  

I restrict the sample to male, prime-age (15-65 years), regular salaried/wage 

employees who have worked at least 5 days at their main economic activity during the 

reference week.  is defined as the logarithm of weekly wage and salary 

earnings (either in cash or in kind, including bonus and perquisites) for the main 

economic activity.  

ijWageln

jLeontief , which indicates the length of production chains in industry j, is the 

column sum of the Leontief inverse coefficient of each industry computed from the 

input-output (IO) table of India 1998-99 (CSO 2005), as follows: 

∑= k kjj leonLeontief , 

where  is the Leontief inverse coefficient in cell kj. Subscripts k and j denote row 

and column of the IO table, respectively.  measures how many units of 

domestic inputs industry j requires, both directly and indirectly, to produce one unit of 

output in industry j. I use this  as a proxy for the length of the production 

chains of industry j.

kjleon

jLeontief

jLeontief
6 It should be noted that only domestic inputs are used, as explained 

in Appendix I, since the quality of imported input is assumed to be relatively good and 

is not likely to be affected much especially by the domestic low-skilled workers. 

As , three variables ( , , and ) are constructed. 

 is defined as the percentage of low-skilled workers (i.e. illiterate workers and 

literate workers without formal schooling or with below primary-level education), who 

jLowEdu jbpleon jbpwin jbpbtw

jbpleon

                                                  
5 The 1999 dataset has some advantages compared with the other rounds. It contains some important 
variables which were not asked in the former rounds (e.g. number of workers in the enterprise for 
which an individual is working). Using the data from NSS 2004 may create a problem when 
matching with variables computed from the IO table of 2003-04, since the quality of those variables 
is likely to be worse as a result of estimating the import flow matrix of 2003-04 from the 1993 IO 
table. 
6 See Asuyama (2011) for a more detailed explanation of . jLeontief
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are involved across all the production chains of industry j which include both chains 

within industry j and those in other industries. It is computed as follows: 

∑= k jkjkj Leontiefleonbpwinbpleon )/*( , 

where  is the percentage of low-skilled people working within industry k, 

which is computed from NSS 1999.  is also constructed as follows:  

kbpwin

jbpbtw

∑ ≠
−=

jk jjjkjkj leonLeontiefleonbpwinbpbtw )]/(*[  

The term  indicates the length of production chains (or the amount 

of input required) outside industry j. Thus,  represents the share of low-skilled 

workers who are involved in producing inputs (both directly and indirectly) outside 

industry j. It should be noted that all three  variables are constructed based 

on all working individuals including female, non-prime-age, part-time, casual and 

self-employed workers. 

)( jjj leonLeontief −

jbpbtw

LowEdu j

 In order to match the industry classifications of the IO table (115 industries) 

and those of NSS 1999 (5-digit NIC-1998 code), 42 industry categories are constructed 

as presented in Appendix II. The constructed key variables, , , , 

and  for the 42 industries are reported in Table 1.  tends to be longer 

in the manufacturing industries and shorter in the agriculture, forestry, fishing, mining, 

and service industries. Since the Leontief inverse coefficient tends to be larger in cell jj, 

and show the similar trends. By contrast,  exhibits a different 

trend. For instance, the share of low-skilled workers in agriculture, forestry, fishing, and 

mining industries is much smaller in terms of  than in terms of and 

. It indicates that those industries employ the large proportion of low-skilled 

workers within their industry, but the skill level embodied in the non-labor input from 

other industries is not so low. 

jLeontief

jLeontief

jbpbtw

jbpleon jbpwin

jbpleon

jbpbtw

j

j

bpleon

bpwin

jbpwin

jbpbtw

A set of variables X includes the following industry-specific variables: the ratio 

of imported input to the total input; the ratio of imports of final goods to 

[output+import-export] which is an indicator for the degree of import competition; the 
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ratio of export to output; a set of dummy variables which indicate whether the industry 

is delicensed, not reserved for the public sector, and open to foreign direct investment 

(FDI) up to 51% equity or more. X also includes individual-specific dummy variables 

indicating whether the individual is employed temporarily, a member of a 

union/association, working for a public or semi-public firm, working for a small firm 

employing less than 10 workers. Z includes those individual-specific dummy variables, 

dummies for Muslim religion, social groups, household headedness, marital status, 

occupation, rural residence, and a set of State and industry affiliation dummies. Table 2 

presents the summary statistics for all the variables used in the regression analysis.  

 

5. Estimation Results  

Tables 3 and 4 report the regression results for estimation equations (1) and (2) 

which test Hypothesis 1 and 2. All estimations are obtained by weighted least squares 

regression by utilizing the survey weight of NSS 1999. The results in Table 4 restrict the 

sample to manufacturing and service industries by dropping four primary industries 

(agriculture; forestry and logging; fishing; mining and quarrying). This is because the 

quality-adjusted productivity of those primary industries is likely to be substantially 

affected by inputs such as land, weather, and natural resources, which are not included 

as inputs in the IO table and thus not captured by . Column (1) in both tables 

just adds an interaction term between  and  to the ordinary 

Mincer-type wage equation. Another interaction term between and  is 

added in column (2), and more interaction terms are controlled in column (3). In all 

those specifications in both tables, the coefficient on the interaction term between  

and is negative and statistically significant, as predicted by Hypothesis 1.  

jLeontief

iEdu jLeontief

Edui jbpleon

Edui

jLeontief

The coefficient on the interaction term between  and  is not 

statistically significant in all specifications except for column (3) of Table 4, in which 

the coefficient is slightly positive and statistically significant. This contradicts 

iEdu jbpleon
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Hypothesis 2 which predicts a negative coefficient on . In order to 

examine in more detail the effect of worker skill level embodied in the inputs on 

industry-specific education wage premium, column (4) decomposes the effect of the 

proportion of low-educated workers into that within industry j ( ) and that outside 

industry j ( ). In this specification, the coefficient on  is still 

significantly negative. Furthermore, it turns out that the share of low-skilled workers 

involved in producing inputs outside industry j ( ) negatively affects the 

education wage premium of industry j, as predicted by Hypothesis 2. By contrast, the 

effect of the share of low-skilled workers within industry j ( ) is either 

statistically insignificant (Table 3) or slightly but statistically significantly positive 

(Table 4). This positive association between within-industry higher percentages of 

low-skilled labor and higher skill wage premium is puzzling. It is necessary to check 

more carefully whether this result is robust by examining additional samples in future. 

ji LowEduEdu *

jbpwin

i LeontiefEdu *

jbpbtw

bpwin

jLeontief

jbpbtw j

j

Leontief

The negative impact of  on education premium is not negligible. If 

an individual moves to an industry with one larger  (for example, switch 

from Banking to Leather and leather product industry), the wage premium for one year 

schooling drops from 5.5% to 4.6%, even using the smallest negative estimate obtained 

in column (1) of Table 3.

jLeontief

jbpbtw

7 If we use the estimate of the largest negative estimate 

(column (4) of Table 4), the education premium drops from 17.0% to 14.7%. This 

means that an individual with university-level education with 16 year schooling earns 

28.6% point more at minimum (or 334.9% point more at maximum), ceteris paribus, if 

he works in the Banking industry rather than in the Leather and leather product 

industry.8 The negative impact of  is not as large as that of . The 

wage premium for one year schooling drops from 16.04% to 15.95% in Table 3, and 

from 17.02% to 16.87% in Table 4. As a result, the differences in wage premium for 16 

j

                                                  
7 5.5% = [exp(0.053)-1]*100. 4.6% = [exp(0.053-0.008)-1]*100 
8  The wage of an individual without schooling is set equal to 100 in both industries. 
28.6%=[(1+5.5/100)^16-(1+4.6/100)^16]*100. 334.9%=[(1+17.0/100)^16-(1+14.7/100)^16]*100. 
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year schooling between the Banking and Leather industries become 13.1% point and 

25.1% point, respectively.  

Apart from  and , whether individual i is temporarily 

employed, a member of a union/association, and working for a small firm; and whether 

this individual is working in an industry which faces higher import competition, utilizes 

a larger proportion of imported inputs, and is delicensed, all this is associated with 

lower education premium. In contrast, whether individual i is working for a public firm 

and working in an industry which is open to FDI is associated with higher education 

premium. 

jLeontief jbpbtw

As mentioned before, Figure 1 illustrates the educational attainment of the 

employed population across industries using the NSS 1999 data. It can be seen that the 

pattern of skill distribution varies significantly across industries. In order to formally 

test whether skill sorting is taking place as predicted by Hypothesis 3, equation (3) is 

estimated. Table 5 reports the estimation results. As , which indicates the 

proportion of high-skilled workers working within industry j, three variables are used: 

the percentage of workers with graduate and above education ( ), that with 

higher secondary and above education ( ), and that with secondary and above 

education ( ).

jHighEdu

jgradwin

ly assoc

jhswin

h High

can

jswin 9 The results in the upper panel utilize all industries, while those in 

the lower panel restrict samples to manufacturing and service industries. As expected, 

 is negatively associated wit j  in all specifications, although 

some estimates are not statistically signifi jLeontief  is larger by one, the 

percentage of high-skilled workers is 10-30% smaller when we only focus on the 

statistically significant estimates. jbpleon  is also negative iated with 

jHighEdu . However, it seems natural that the percentage of high-skilled workers 

( jHighEdu ) and that of low-skilled workers within industry j ( jbpwin ), which is part of 

jLeontief Edu

t. If 

                                                  
9 Note that upper-secondary (high school level) education in India is further divided into what is 
called “higher secondary” education (2 years) and “secondary” education (2 years). The 
lower-secondary (junior high school level) education is called “middle” education in India. 
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jbpleon , are negatively correlated. Th tea jpleon , jbpbtw  is added in 

s (7)-(9). jbpbtw  is also negatively d with jHighEdu , although the 

association is not statistically significa using jgradwin  as the dependent 

variable. One percentage point increase in the share of low-skilled worker who are 

involved in producing inputs outside industry j ( jbpbtw ) is associated with 1-2% 

decrease in the share of high-skilled workers in industry j. In sum, skill sorting 

hypothesis (Hypothesis 3) is confirmed in most

us, ins d of

 associate

nt when 

 b

 of the specifications. 

column

 

 

6. Concluding Remarks 

This paper has proposed a mechanism that links industry’s technological 

characteristics (i.e. quality of non-labor inputs), industry-specific skill wage premium, 

and skill sorting across industries. The quality of semi-finished non-labor input utilized 

in a certain industry is proxied by the length of production chains (or units of inputs 

required, either directly or indirectly, to produce an industry output). This is done by 

assuming that damage caused by low-skilled workers or poor infrastructure on input 

quality accumulates and becomes greater as the length of production chains becomes 

longer. The wages of high-skilled workers are dragged down more as the quality of 

non-labor input they work with becomes worse. In other words, skill wage premium 

becomes lower in industries which utilize low-quality non-labor input due to longer 

production chains and larger proportion of low-skilled workers involved across the 

chains. In consequence, skilled workers are sorted into those industries where they can 

receive higher skill-wage premium. In a real world where labor mobility is low, perfect 

skill sorting does not occur, and thus to some extent it is possible to observe both 

inter-industry skill wage differentials and skill sorting.  

By examining Indian wage and employment data for 1999-2000, this paper 

also has provided empirical evidence to support the above mechanism. First, it has 

found that the skill wage premium is lower [higher] in industries with longer [shorter] 
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production chains. Second, the skill wage premium is lower [higher] in industries with a 

higher [lower] proportion of low-skilled workers who are engaged in producing inputs 

outside their own industry. Third, the proportion of high-skilled workers is larger in 

industries with shorter production chains and lower ratio of low-skilled workers 

involved across the chains (i.e., a skill sorting trend is observable). 

Several areas are left for future research. First, constructing a formal economic 

model for the mechanism proposed in this paper is essential. Second, increasing 

samples by adding other NSS rounds or using a larger dataset that includes other 

countries would be useful to make the empirical evidence of this paper more robust. 

Third, utilizing hourly wage data is also preferable. Last, but not least, finding a more 

appropriate variable which proxies individual “skill” or “ability” is necessary, although 

this is a very hard task. In this paper, I measured skill wage premium by private returns 

to education. However, measurement errors are likely to exist since years of schooling 

are estimated using the highest education level attained. It is also highly possible that 

persons with the same years of schooling may possess different levels of skills or 

abilities and thus differ in their productivities. In that case, higher education wage 

premium in a certain industry may reflect the situation where workers who have higher 

ability among the same educated workers have been sorted into the industry and earn 

higher wages due to their high productivity. This would mean that the empirical results 

to confirm Hypotheses 1 and 2 in this paper just reflect the result of skill sorting 

(Hypothesis 3). Such ability differences may partly explain the existence of 

inter-industry education wage differentials. However, due to the low labor mobility in 

India, assuming the co-existence of inter-industry skill wage differentials (in terms of 

returns to true ability) and imperfect skill sorting seems more realistic and reasonable.   
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Figure 1 Educational Attainment of Employed Population by Industry 
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Notes: An individual is considered working based on the weekly activity status. For industry classification, see Appendix I.  

Source: NSSO, Unit-level data of National Sample Survey (NSS), Employment and Unemployment schedule, 1999-2000. 
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Table 1 Industry-specific Indices of Production-Chain Length and Low-skilled 
Worker Ratios 

Leontief (rank) bpleon (%) (rank) bpwin (%) (rank) bpbtw (%) (rank)
1 Agriculture 1.391 (34) 61.5 (2) 68.2 (3) 29.5 (27)
2 Forestry & logging 1.161 (41) 72.6 (1) 78.6 (1) 33.9 (17)
3 Fishing 1.227 (38) 61.4 (3) 67.1 (4) 34.1 (15)
4 Mining & quarrying 1.314 (36) 52.0 (6) 59.1 (7) 27.4 (32)
5 Food 1.914 (19) 45.4 (11) 43.4 (13) 48.1 (1)
6 Bevarage 1.946 (15) 45.5 (9) 50.4 (10) 40.1 (6)
7 Tobacco 1.884 (21) 59.2 (4) 73.2 (2) 41.3 (4)
8 Textile 2.157 (3) 41.9 (13) 47.4 (11) 35.2 (12)
9 Wearing apparel 2.247 (2) 32.5 (18) 26.5 (23) 37.4 (8)
10 Wooden furniture 1.772 (25) 37.6 (15) 35.3 (16) 41.1 (5)
11 Wood and wood products 1.710 (28) 53.8 (5) 61.0 (6) 42.2 (3)
12 Paper, paper products & newsprint 2.101 (5) 30.6 (20) 28.1 (22) 33.8 (19)
13 Printing & publishing 1.761 (27) 22.8 (29) 18.3 (28) 29.6 (26)
14 Leather footwear 2.073 (9) 39.5 (14) 45.5 (12) 33.8 (18)
15 Leather and leather products 2.312 (1) 34.3 (17) 33.4 (17) 35.5 (10)
16 Rubber products 2.128 (4) 26.0 (25) 17.1 (29) 34.3 (14)
17 Plastic products 1.960 (14) 21.3 (32) 14.0 (32) 29.8 (24)
18 Petroleum & coal tar products 1.501 (32) 24.6 (27) 18.8 (27) 36.7 (9)
19 Chemical products 1.942 (16) 31.8 (19) 31.6 (19) 32.2 (21)
20 Non-metallic mineral products 1.773 (23) 49.3 (7) 62.4 (5) 31.8 (22)
21 Iron and steel 2.090 (7) 21.8 (31) 16.9 (30) 29.7 (25)
22 Non-ferrous basic metals 1.679 (29) 27.4 (23) 26.5 (24) 28.7 (29)

23
Industrial machinery, machine tools,
fabricated metal products

1.925 (17) 25.7 (26) 26.0 (25) 25.3 (37)

24
Office computing machines, communication
equipment, electronic equipment (incl. TV)

1.764 (26) 13.3 (37) 5.2 (39) 24.7 (40)

25 Electrical industrial machinery 1.897 (20) 17.2 (36) 10.9 (36) 24.1 (41)

26 Electrical machinery and apparatus (wire,
cable, batteries, electric appliances)

1.772 (24) 19.9 (33) 15.1 (31) 26.4 (33)

27 Motor vehicles 2.092 (6) 18.9 (35) 12.1 (34) 26.1 (34)
28 Other transport equipment (excl. aircraft) 2.069 (10) 27.2 (24) 28.3 (21) 26.0 (35)

29 Miscellaneous manufacturing (incl. watches
and clocks, medical instruments, aircraft)

2.025 (12) 30.1 (21) 32.8 (18) 27.4 (31)

30 Construction 1.793 (22) 46.2 (8) 55.9 (8) 33.7 (20)
31 Electricity, gas and water 2.020 (13) 19.7 (34) 12.4 (33) 35.4 (11)
32 Transport (railway) 1.921 (18) 22.5 (30) 20.0 (26) 25.2 (39)
33 Transport (other), storage 1.614 (30) 34.8 (16) 39.2 (15) 28.0 (30)
34 Post & telecommunication 1.222 (39) 7.3 (42) 2.5 (40) 29.3 (28)
35 Trade (wholesale and retail) 1.235 (37) 29.9 (22) 30.9 (20) 25.3 (38)
36 Hotels and restaurants 2.025 (11) 45.5 (10) 43.4 (14) 47.6 (2)
37 Banking 1.315 (35) 8.7 (40) 2.3 (41) 35.0 (13)
38 Insurance 1.424 (33) 7.7 (41) 0.0 (42) 25.5 (36)
39 Education and research 1.183 (40) 9.6 (39) 5.3 (38) 34.0 (16)
40 Medical and health 2.081 (8) 24.0 (28) 9.1 (37) 37.7 (7)

41 Other services (RE, BusiServ, ComputerServ,
Renting, Community, Other)

1.516 (31) 44.5 (12) 50.6 (9) 31.7 (23)

42 Public administration , defence 1.000 (42) 11.5 (38) 11.5 (35)
Notes: For the definition of variables and industry classification, see Section 4 and Appendix.  
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Table 2 Summary Statistics for the Variables Used in the Regression Analyses 

Variable Unit Mean Std. Dev.
wage Indian Rupee 998.9 952.5
age year 36.4 11.0
eduy year 9.2 5.0
leontief 1.499 0.392
bpleon % 27.8 15.6
bpbtw % 31.3 5.7
bpwin % 27.9 19.3
imported input % 11.12 11.18
import % 5.46 9.68
export % 6.46 10.18
delicensed dummy 0.999 0.036
private dummy 0.795 0.404
FDI dummy 0.507 0.500
muslim dummy 0.099 0.298
SG (ST) dummy 0.051 0.220
SG (SC) dummy 0.147 0.354
SG (OBC) dummy 0.294 0.456
SG (Other) dummy 0.508 0.500
household head dummy 0.713 0.453
married dummy 0.796 0.403
temporary dummy 0.281 0.450
union dummy 0.432 0.495
occ1 (professionals) dummy 0.051 0.219
occ2 (technicians) dummy 0.097 0.296
occ3 (govt admin & executive
officials)

dummy 0.011 0.103

occ4 (managers) dummy 0.022 0.146
occ5 (clerical) dummy 0.210 0.407
occ6 (sales) dummy 0.069 0.254
occ7 (service) dummy 0.106 0.308
occ8 (farmers etc.) dummy 0.050 0.218
occ9 (production related:
supervisors & foremen)

dummy 0.027 0.162

occ10 (production related: others) dummy 0.336 0.472
occ11 (not classified) dummy 0.022 0.147
public firm dummy 0.345 0.476
small firm dummy 0.326 0.469
rural dummy 0.373 0.484  
Notes: The number of observations is 24,955 for bpbtw, and 32,101 for the other variables. For the 
definition of variables, see Appendix I.  
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Table 3 Regression Results for Wage Equation (all industries) 

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.
age 0.042 (0.004) *** 0.042 (0.004) *** 0.044 (0.004) *** 0.046 (0.004) ***
age squared -0.0004 (0.000) *** -0.0004 (0.000) *** -0.0004 (0.000) *** -0.0004 (0.000) ***
eduy 0.053 (0.005) *** 0.053 (0.005) *** 0.120 (0.030) *** 0.149 (0.034) ***
eduy*leontief -0.008 (0.003) *** -0.009 (0.003) *** -0.014 (0.004) *** -0.013 (0.006) **
eduy*bpleon 0.0001 (0.000) 0.0001 (0.000)
eduy*bpbtw -0.001 (0.000) **
eduy*bpwin 0.00005 (0.000)
eduy*imported input 0.00002 (0.000) -0.0003 (0.000)
eduy*import -0.0003 (0.000) *** -0.0004 (0.000) ***
eduy*export 0.0001 (0.000) 0.0001 (0.000)
eduy*temporary -0.033 (0.003) *** -0.030 (0.003) ***
eduy*union -0.004 (0.003) -0.001 (0.003)
eduy*public firm 0.003 (0.003) -0.002 (0.003)
eduy*small firm -0.008 (0.003) *** -0.011 (0.003) ***
eduy*delicensed -0.055 (0.028) * -0.058 (0.029) **
eduy*private -0.001 (0.005) 0.001 (0.008)
eduy*FDI 0.014 (0.004) *** 0.015 (0.004) ***
muslim 0.015 (0.015) 0.016 (0.015) 0.004 (0.015) -0.0002 (0.017)
ST -0.037 (0.025) -0.037 (0.025) -0.036 (0.024) -0.050 (0.026) *
SC -0.061 (0.016) *** -0.061 (0.016) *** -0.056 (0.016) *** -0.040 (0.018) **
OBC -0.065 (0.012) *** -0.065 (0.012) *** -0.063 (0.012) *** -0.077 (0.012) ***
household head 0.104 (0.014) *** 0.104 (0.014) *** 0.097 (0.014) *** 0.095 (0.014) ***
married 0.061 (0.016) *** 0.061 (0.016) *** 0.052 (0.016) *** 0.045 (0.016) ***
temporary -0.215 (0.014) *** -0.215 (0.014) *** 0.046 (0.024) * 0.054 (0.025) **
union 0.192 (0.014) *** 0.192 (0.014) *** 0.225 (0.029) *** 0.244 (0.030) ***
occ1 (professionals) 0.576 (0.052) *** 0.571 (0.053) *** 0.504 (0.053) *** 0.534 (0.064) ***
occ2 (technicians) 0.380 (0.047) *** 0.374 (0.047) *** 0.326 (0.047) *** 0.332 (0.055) ***
occ3 (govt admin&exe) 0.556 (0.058) *** 0.552 (0.058) *** 0.480 (0.058) *** 0.596 (0.076) ***
occ4 (managers) 0.626 (0.067) *** 0.620 (0.067) *** 0.538 (0.068) *** 0.557 (0.076) ***
occ5 (clerical) 0.168 (0.040) *** 0.162 (0.042) *** 0.116 (0.042) *** 0.116 (0.048) **
occ6 (sales) 0.171 (0.047) *** 0.165 (0.048) *** 0.124 (0.049) ** 0.125 (0.053) **
occ7 (service) 0.114 (0.041) *** 0.108 (0.042) *** 0.073 (0.041) * 0.009 (0.048)
occ9 (prod. supervisors) 0.265 (0.046) *** 0.258 (0.046) *** 0.227 (0.046) *** 0.222 (0.052) ***
occ10 (prod. others) 0.199 (0.039) *** 0.192 (0.040) *** 0.151 (0.040) *** 0.139 (0.046) ***
occ11 (not classified) 0.312 (0.054) *** 0.305 (0.055) *** 0.251 (0.055) *** 0.245 (0.061) ***
public firm 0.217 (0.015) *** 0.216 (0.015) *** 0.179 (0.034) *** 0.264 (0.037) ***
small firm -0.186 (0.013) *** -0.186 (0.013) *** -0.112 (0.026) *** -0.077 (0.026) ***
rural -0.136 (0.013) *** -0.137 (0.014) *** -0.134 (0.013) *** -0.131 (0.012) ***
State dummies YES YES YES YES
Industry dummies YES YES YES YES
Number of observations 32101 32101 32101 24955
R-squared 0.590 0.590 0.598 0.598
F-statistics 240.46 237.98 230.95 194.14

(1) (2) (3) (4)

Notes: The dependent variable is the logarithm of an individual’s weekly wage. All estimations are 
obtained by weighted least squares regression using the survey weight of NSS 1999. Robust standard 
errors are reported in parentheses. *, **, and *** indicate 10%, 5%, and 1% significance level, 
respectively. SG(Other) and occ8 (Farmers etc.) are omitted as reference categories. Public administration 
industry, for which bpbtw is not available, is not included in the estimation of column (4). For the 
definition of variables, see Appendix I. 
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Table 4 Regression Results for Wage Equation (manufacturing and service 
industries) 

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.
age 0.042 (0.004) *** 0.042 (0.004) *** 0.044 (0.004) *** 0.045 (0.004) ***
age squared -0.0004 (0.000) *** -0.0004 (0.000) *** -0.0004 (0.000) *** -0.0004 (0.000) ***
eduy 0.054 (0.005) *** 0.054 (0.005) *** 0.109 (0.030) *** 0.157 (0.035) ***
eduy*leontief -0.009 (0.003) *** -0.009 (0.004) ** -0.018 (0.005) *** -0.020 (0.007) ***
eduy*bpleon -0.00001 (0.000) 0.0004 (0.000) ***
eduy*bpbtw -0.001 (0.000) ***
eduy*bpwin 0.0004 (0.000) ***
eduy*imported input -0.0003 (0.000) -0.001 (0.000) ***
eduy*import 0.0003 (0.000) 0.0003 (0.000)
eduy*export -0.0002 (0.000) -0.0003 (0.000)
eduy*temporary -0.032 (0.003) *** -0.029 (0.003) ***
eduy*union -0.008 (0.004) ** -0.006 (0.004)
eduy*public firm 0.006 (0.003) * 0.001 (0.003)
eduy*small firm -0.009 (0.003) *** -0.012 (0.003) ***
eduy*delicensed -0.041 (0.028) -0.042 (0.029)
eduy*private 0.004 (0.005) 0.010 (0.008)
eduy*FDI 0.006 (0.005) 0.007 (0.005)
muslim 0.009 (0.016) 0.009 (0.016) -0.003 (0.016) -0.009 (0.017)
ST -0.022 (0.027) -0.022 (0.027) -0.027 (0.026) -0.039 (0.030)
SC -0.075 (0.017) *** -0.075 (0.017) *** -0.072 (0.017) *** -0.056 (0.019) ***
OBC -0.062 (0.012) *** -0.062 (0.012) *** -0.061 (0.012) *** -0.075 (0.013) ***
household head 0.110 (0.014) *** 0.110 (0.014) *** 0.103 (0.014) *** 0.100 (0.015) ***
married 0.064 (0.017) *** 0.064 (0.017) *** 0.056 (0.017) *** 0.052 (0.017) ***
temporary -0.225 (0.014) *** -0.225 (0.014) *** 0.039 (0.027) 0.056 (0.027) **
union 0.196 (0.015) *** 0.196 (0.015) *** 0.278 (0.034) *** 0.307 (0.036) ***
occ1 (professionals) 0.400 (0.066) *** 0.400 (0.066) *** 0.351 (0.065) *** 0.324 (0.089) ***
occ2 (technicians) 0.198 (0.061) *** 0.198 (0.061) *** 0.169 (0.060) *** 0.116 (0.083)
occ3 (govt admin&exe) 0.375 (0.070) *** 0.375 (0.070) *** 0.325 (0.070) *** 0.392 (0.100) ***
occ4 (managers) 0.437 (0.079) *** 0.437 (0.079) *** 0.379 (0.079) *** 0.343 (0.100) ***
occ5 (clerical) -0.009 (0.057) -0.009 (0.058) -0.033 (0.057) -0.089 (0.079)
occ6 (sales) -0.0002 (0.063) -0.0001 (0.063) -0.022 (0.063) -0.075 (0.083)
occ7 (service) -0.053 (0.058) -0.053 (0.058) -0.065 (0.057) -0.178 (0.080) **
occ9 (prod. supervisors) 0.078 (0.062) 0.078 (0.062) 0.066 (0.060) 0.001 (0.082)
occ10 (prod. others) 0.017 (0.057) 0.017 (0.057) -0.005 (0.056) -0.072 (0.078)
occ11 (not classified) 0.092 (0.067) 0.092 (0.067) 0.065 (0.066) 0.005 (0.087)
public firm 0.213 (0.016) *** 0.213 (0.016) *** 0.147 (0.037) *** 0.238 (0.041) ***
small firm -0.182 (0.013) *** -0.182 (0.013) *** -0.099 (0.026) *** -0.054 (0.026) **
rural -0.138 (0.014) *** -0.138 (0.014) *** -0.135 (0.014) *** -0.129 (0.013) ***
State dummies YES YES YES YES
Industry dummies YES YES YES YES
Number of observations 30070 30070 30070 22924
R-squared 0.579 0.579 0.587 0.589
F-statistics 227.21 225.31 213.54 180.21

(1) (4)(2) (3)

Note: Same as in Table 3. 
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Table 5 Regression Results for Skill Sorting 
sample

dependent
variable

leontief -11.888 -12.189 -9.273 -12.793 *** -13.461 *** -10.994 ** -9.014 -6.628 0.074
(7.169) (9.143) (11.492) (4.479) (4.609) (4.167) (7.736) (9.607) (11.670)

bpleon -0.756 *** -1.062 *** -1.437 ***
(0.095) (0.098) (0.088)

bpbtw -0.657 -1.092 ** -1.654 **
(0.414) (0.514) (0.624)

constant 36.388 *** 46.111 *** 56.258 *** 62.403 *** 82.673 *** 105.726 *** 52.583 *** 71.513 *** 92.968 ***
(12.852) (16.391) (20.601) (8.664) (8.916) (8.060) (17.547) (21.790) (26.469)

Number of
observations

42 42 42 42 42 42 41 41 41

R-squared 0.064 0.043 0.016 0.644 0.763 0.874 0.111 0.131 0.160
F-statistics 2.75 1.78 0.65 35.3 62.77 135.23 2.36 2.86 3.63
Prov >F 0.105 0.190 0.425 0.000 0.000 0.000 0.108 0.069 0.036

sample
dependent
variable

leontief -23.330 *** -27.530 *** -29.633 ** -9.881 * -8.109 -3.071 -23.037 *** -24.837 ** -23.354 *
(7.565) (9.499) (11.710) (5.680) (5.690) (4.754) (8.403) (10.280) (12.208)

bpleon -0.844 *** -1.219 *** -1.667 ***
(0.134) (0.135) (0.113)

bpbtw -0.618 -1.039 ** -1.587 ***
(0.388) (0.475) (0.564)

constant 59.183 *** 76.665 *** 96.805 *** 59.470 *** 77.080 *** 97.371 *** 79.061 *** 105.829 *** 137.194 ***
(13.909) (17.465) (21.530) (9.672) (9.690) (8.096) (18.178) (22.238) (26.411)

Number of
observations

38 38 38 38 38 38 37 37 37

R-squared 0.209 0.189 0.151 0.628 0.757 0.883 0.263 0.278 0.293
F-statistics 9.51 8.4 6.4 29.56 54.62 132.44 6.06 6.54 7.05
Prov >F 0.004 0.006 0.016 0.000 0.000 0.000 0.006 0.004 0.003

A. All industries

B. Manufacturing and service industries

gradwin

(1)

hswin

(2)

swin

(3)

gradwin

(4)

gradwin

(7)

hswin

(8)

hswin

(5)

swin

(6)

swin

(9)

gradwin hswin swin gradwin hswin swin gradwin hswin swin

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Notes: The dependent variable is the percentage of high-skilled workers (gradwin =graduate and above, 
hswin = higher secondary and above, swin = secondary and above) in industry j. Standard errors are 
reported in parentheses. *, **, and *** indicate 10%, 5%, and 1% significance level, respectively 
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Appendix I. Data Sources and Construction of Variables Used in the Analysis 

Data / Variable Sources / Construction method 
wage Source: NSSO, Unit-level data of National Sample Survey, Employment 

and Unemployment schedule, 1999-00 [NSS 1999]. 
Weekly wage and salary earnings (received or receivable, including 
bonus and perquisites, expressed in terms of Indian Rupees) are for 
full-time economic activities, which are those done for at least 5 days, 
during the reference week. They include both in-cash and in-kind 
earnings. Wages and salary in kind are valuated at the current retail price 
by the NSSO. In the NSS, it is considered working for a half day if an 
individual has worked for 1 hour or more but less than 4 hours in a day. If 
an individual has worked for 4 hours or more, it is considered working 
for a full day. This information is used to compute the number of working 
days.  
Only samples of male, prime-age (15-65), regular salaried/wage 
employees who have worked at least 5 days at their main economic 
activity during the reference week are used in the regression analyses. 
 

age Source: NSS 1999. 
Individual i’s age. 
 

eduy Source: NSS 1999. 
Years of education, which are estimated from the highest general 
education level attained by individual i, are determined by allocating the 
following number of years of schooling to each level: illiterate (0 years), 
literate without formal schooling or literate but below primary (2.5 
years), primary (5 years), middle (8 years), secondary (10 years), higher 
secondary (12 years), graduate and above (16 years). 
 

leontief Sources: Input-Output Transaction Table of 1998-99 and 1993-94 (CSO, 
2000, 2005). [India IO 1998, 1993] 

jLeontief , which is the column sum of the Leontief inverse coefficient of 
industry j, is computed as follows: 

∑= k kjj leonLeontief , 
where is the Leontief inverse coefficient in cell kj. Subscripts k 
and j denote row and column of the IO table, respectively. The Leontief 
inverse coefficient matrix L comprised of k * j s is computed as  

kjleon

kjleon
1)( −−= dAIL , 

where I is the identity matrix;  is the input coefficient matrix for 
domestic inputs, in which the coefficient in cell kj is the domestic input in 
cell kj divided by the output of industry j. Since the India IO 1998 does 
not contain an import flow matrix, the values of domestic and imported 
inputs are estimated by using IO 1993 which contains an import flow 
matrix. It is assumed that the share of imported input for each column j in 
the total import is unchanged from 1993 to 1998. For more details on 
computation, see the Appendix I of Asuyama (2011). 

dA

 
bpleon Sources: NSS 1999, and India IO 1998, 1993. 

For the definition and construction of the index, see Section 4 in the main 
text. 
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bpbtw Sources: NSS 1999, and India IO 1998, 1993. 

For the definition and construction of index, see Section 4 in the main 
text. 
 

bpwin Source: NSS 1999. 
For the definition and construction of index, see Section 4 in the main 
text. 
 

imported input Sources: India IO 1998, 1993. 
The ratio of imported input is calculated for each industry as the 
percentage of the value of imported inputs to the value of total inputs, 
using the IO tables of India. Import values are estimated as in the above 
explanation of Leontief. 
 

Import Sources: India IO 1998. 
An industry’s ratio of final good import is defined as 
[import/(output+import-export)]*100(%). 
 

export Sources: India IO 1998. 
An industry’s ratio of final good export is defined as 
[export/output]*100(%). 
 

delicensed Sources: Aghion et al., (2008) and Handbook of Industrial Policy and 
Statistics 2001 (Ministry of Commerce and Industry, 2002). 
A binary variable that equals one if industry j is still covered under 
compulsory industrial licensing which was stipulated in the Industries 
(Development and Regulation) Act of 1951, and zero otherwise. Only 
industry 7 (tobacco) is coded as one.  
 

private 
 

Sources: “Statement on Industrial Policy, July 24, 1991” by the Ministry 
of Industry, Government of India and Handbook of Industrial Policy and 
Statistics 2001 (Ministry of Commerce and Industry, 2002). 
A binary variable that equals one if industry j is not reserved for the 
public sector, and zero if reserved for that sector. Only industries 32 
(railway transport) and 42 (public administration) are coded as one. 
 

FDI 
 

Sources: Aghion et al., (2008) and Handbook of Industrial Policy and 
Statistics 2001 (Ministry of Commerce and Industry, 2002). 
A binary variable that equals one if industry j is partly (in terms of some 
sub-industry level) or entirely opened to automatic approval of FDI for 
up to 51 percent equity or more, and zero otherwise. 
 

muslim 
 

Source: NSS 1999. 
A binary variable that equals one if individual i’s religion is Islam, and 
zero otherwise. 
 

SG (ST, SC, OBC, 
Other) 

Source: NSS 1999. 
Dummy variables that indicate to which social group individual i 
belongs. ST is scheduled tribe, SC is scheduled caste, OBC is other 
backward class, and Other is other social groups. 
 

household head Source: NSS 1999. 
A binary variable that equals one if individual i is the head of the 
household, and zero otherwise. 
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married Source: NSS 1999. 

A binary variable that equals one if individual i is currently married, and 
zero otherwise. 
 

temporary Source: NSS 1999. 
A binary variable that equals one if individual i’s nature of employment is 
temporary, and zero if permanent. 
 

union Source: NSS 1999. 
A binary variable that equals one if individual i is a member of a 
union/association, and zero otherwise. 
 

occ (1-11) Source: NSS 1999. 
Dummy variables that indicate individual i‘s occupation. Figures in the 
parenthesis below indicate NCO-1968 code. 
occ1: Professionals. (00, 02, 05, 07, 10-14, 150, 16-19) 
occ2: Technicians etc. (01, 03, 04, 06, 08, 09, 151-156, 159) 
occ3: Government administrative & executive officials (20, 21, 31) 
occ4: Managers (22-30) 
occ5: Clerical and related workers (3) 
occ6: Sales workers (4) 
occ7: Service workers (5) 
occ8: Farmers, fishermen, hunters, loggers, and related workers (6) 
occ9: Production and related workers, transport equipment operators and 
laborers: supervisors & foremen (Among 71-98, all three-digit codes 
ending with zero (e.g. 710, 720, 730, ... 980) 
occ10: Production and related workers, transport equipment operators 
and laborers: other than supervisors & foremen (7-9 except for those 
recorded as occ9) 
occ11: Not classified (X) 
 

public firm Source: NSS 1999. 
A binary variable that equals one if the enterprise for which individual i is 
working is either a public or semi-public type, and zero otherwise. 
 

small firm Source: NSS 1999. 
A binary variable that equals one if the number of workers of the 
enterprise for which individual i is working is less than 10, and zero 
otherwise. 
 

rural Source: NSS 1999. 
A binary variable that equals one if individual i’s area of residence is 
rural, and zero if urban. 
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Appendix II. Industry Classification 
IO 1998 (IO code) NSS 1999 (NIC-1998 code)

1 Agriculture 1-17, 19, 20 01
2 Forestry & logging 21 02
3 Fishing 23 05
4 Mining & quarrying 23-32 10-14
5 Food 18, 33-38 151-154
6 Bevarage 39 155
7 Tobacco 40 16
8 Textile 41-47, 49 17
9 Wearing apparel 48 181
10 Wooden furniture 50 36101
11 Wood and wood products 51 20
12 Paper, paper products & newsprint 52 21
13 Printing & publishing 53 221, 222
14 Leather footwear 54 192
15 Leather and leather products 55 191, 182
16 Rubber products 56 251
17 Plastic products 57 252
18 Petroleum & coal tar products 58, 59 23
19 Chemical products 60-68 24
20 Non-metallic mineral products 69-71 26
21 Iron and steel 72-74 271, 273
22 Non-ferrous basic metals 75 272

23
Industrial machinery, machine tools,
fabricated metal products

76-81, 83 28, 291, 292

24
Office computing machines, communication
equipment, electronic equipment (incl. TV)

82, 88, 90 30, 32

25 Electrical industrial machinery 84 311, 312

26 Electrical machinery and apparatus (wire,
cable, batteries, electric appliances)

85-87, 89 293, 313-315, 319

27 Motor vehicles 93 34
28 Other transport equipment (excl. aircraft) 91, 92, 94-96 351, 352, 359

29 Miscellaneous manufacturing (incl. watches
and clocks, medical instruments, aircraft)

97, 98 331-333, 353, 361(excluding 36101), 369

30 Construction 99 45
31 Electricity, gas and water 100-102 40, 41
32 Transport (railway) 103 601
33 Transport (other), storage 104, 105 602, 603, 61-63
34 Post & telecommunication 106 64
35 Trade (wholesale and retail) 107 50-52
36 Hotels and restaurants 108 55
37 Banking 109 65, 67
38 Insurance 110 66
39 Education and research 112 73, 80
40 Medical and health 113 851, 852

41 Other services (RE, BusiServ, ComputerServ,
Renting, Community, Other)

111, 114 70-72, 74, 853, 90-93, 95, 99

42 Public administration , defence 115 75  
Notes: The above classification of 42 industries is designed so that the content of the industries between 
the IO table data and NSS 1999 data is matched. In order to obtain reliable data on within-industry skill 
distribution, the number of samples for employed persons extracted from NSS 1999 is kept to at least 
around 100 in each industry. 
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