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Abstract

This paper estimates the impact of industrial agglomeration on firm-level productivity
in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we
formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation
algorithm. A Bayesian instrumental-variables approach is used to address endogeneity
bias of agglomeration. Robust to these potential biases, we find that agglomeration of
the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration
of urban population (i.e. urbanization) has no such effects. Additionally, the localization
effects increase with educational levels of employees and the share of intermediate inputs
in gross output. These results may suggest that agglomeration externalities occur through
knowledge spillovers and input sharing among firms producing similar manufactures.

Keywords: agglomeration economies, spatial autocorrelation, Bayes, Chinese firm-level
data, GIS

JEL classification: C21, C51, R10, R15

1 Introduction

A spatial concentration of economic activity in a number of industries has attracted a consid-
erable attention and posed the question of why firms agglomerate over space since the seminal
work of Marshall (1920). It has long been argued that firms and workers locate in the ag-
glomerated area to benefit from productivity advantages generated by agglomeration economies
through more efficient sharing of local suppliers, better matching between employers and work-
ers, and technology or knowledge spillovers among firms and workers (Duranton and Puga
2004). However, agglomeration also creates heavy congestion and raise factor prices such as
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wages and land prices. Because congestion reduces the productivity advantage from agglomer-
ation economies, these opposing effects render agglomeration economies an empirical question.
Moreover, it is emphasized that “for policy makers the challenge is to best relax the constraints
generated by the congestion and overcrowding of land and resources so that the benefits of ag-
glomeration can be maximized (World Bank, 2008, p. 144).” To evaluate regional policy for
maximizing the benefit of agglomeration effects, it is crucial to quantitatively assess the net
agglomeration effects.1

In this paper, we seek to estimate the impact of agglomeration on firm-level productivity in
manufacturing using the Chinese industrial statistics in 2004. As the China’s coastal area has
achieved remarkable economic growth since the economic reform in 1978, the Yangzi River
Delta has become one of the largest industrial agglomeration areas in the world. As a promi-
nent example of industrial agglomeration, we focus on the region and make the methodological
contributions to the literature. Specifically, we introduce spatial autocorrelation into the em-
pirical model based on firm-level data and employ the hierarchical Bayesian method with an
endogenous regressor.

There are large number of firm-level studies on agglomeration economies such as Mitra
(1999), Henderson (2003), Graham (2008), and Greenstone et al. (2010). Because more pro-
ductive firms may self-select to locate themselves in agglomerated areas (Baldwin and Okubo,
2006), these studies carefully address endogeneity bias in estimation. However, these studies
have not paid attention to spatial autocorrelation resulting, for example, from correlation be-
tween local natural advantages in nearby regions (Anselin, 1988 and 2001; LeSage and Pace,
2009). Thus, agglomeration effects may be estimated with bias when spatial autocorrelation
is not considered. By contrast, the previous studies such Ke (2010), Artis et al. (2012) and
Hashiguchi and Chen (2012) use the aggregate data at the region level and take into account
spatial autocorrelation when estimating agglomeration effects by maximum likelihood estima-
tion (MLE), generalized method of moments (GMM), and Bayesian estimation. Although these
estimation methods resolve spatial autocorrelation, they have been applied only for the analysis
on regional-level productivity.

To identify agglomeration effects on individual firms, one must account for endogeneity bias
and spatial autocorrelation in a firm-level empirical model. However, the prior work has not
fully addressed these multiple issues together for the methodological limitation. For instance, it
is computationally difficult to take into account spatial autocorrelation among individual firms.
Alternatively, spatial autocorrelation may be controlled for at the region-level in the firm-level
specification with an instrumental variable (IV). However, such a hierarchical model contains
a complex structure with large number of unknown parameters, causing the difficulty in imple-
menting MLE and GMM. Therefore, we develop a Bayesian method to estimate a hierarchical
spatial model at the firm level. The Bayesian approach allows us to assume various prior dis-
tributions of unknown parameters in a flexible manner and estimate the spatial econometric
model with a hierarchical structure. Based on the posterior distribution of unknown param-
eters, we conduct Bayesian statistical inference on the estimate of agglomeration economies.
Additionally, we develop a Bayesian instrumental-variable approach to address an endogene-
ity of agglomeration (Rossi et al., 2005). To the best of our knowledge, our work is the first
to apply Bayesian estimation to estimate agglomeration effects on firm-level productivity in a

1The magnitude of agglomeration economies has been estimated in various countries. For the details, see for
example Eberts and McMillen (1999, Section 3), Rosenthal and Strange (2004, Section 2), Graham (2008, pp.
65–67), Cohen and Paul (2009), Broersma and Oosterhaven (2009, pp. 487–489), and Puga (2010).
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hierarchical spatial model.
Our empirical results can be summarized as follows. First, same industry agglomeration

(i.e., localization) has a productivity-boosting effect in this region, but urban population ag-
glomeration (i.e., urbanization) has no such effect. The estimates of spatial autocorrelation
are positive and significant, indicating that our hierarchical spatial modeling is effective and
meaningful. Second, we investigate the difference between IV- and non-IV based posterior dis-
tributions, and find that IV-based posterior distributions tend to be located more on the left-hand
side than the non-IV distribution, implying that the endogenous bias appears to be upward in
direction, consistent with the implication in Baldwin and Okubo (2006). Moreover, the IV es-
timates of localization economies are significantly positive, and the above conclusion is robust
to the IV-based methods.

Finally, we shed light on the nature of agglomeration externalities by analyzing whether
localization effects depend on firm characteristics, such as educational levels of employees, the
degree of input-sharing, and the experience of export business. Such analysis enhances our un-
derstanding of the relationship between agglomeration effects and firm heterogeneity.2 We find
that the localization effects have a positive relationship with educational levels of employees and
the degree of input sharing, indicating that the localization effects generate larger productivity
gains for the firms that employ more well-educated workers and depend more on intermedi-
ate inputs. These results may suggest that absorptive capacity for technology spillovers and
reliance on local procurement are crucial to benefit from industrial agglomeration. Thus, we
highlight the importance of input sharing and knowledge spillovers in accounting for the nature
of agglomeration economies in the Yangzi River Delta.

Before proceeding to the details of our analysis, we must emphasize that our analysis con-
tributes to the literature on agglomeration effects in China. Several empirical studies have in-
vestigated agglomeration economies in China and found the inconsistent results. For example,
Fan (2007) analyzed nonagricultural industrial sectors in 261 prefecture-level regions for 2004
whereas Li et al. (2011) examined firm-level panel data in textile industry for 2000-2005. They
found that the net agglomeration effects are significantly positive. By contrast, Ke (2010) in-
vestigated nonagricultural industrial sectors in 617 cities for 2005 while Hashiguchi and Chen
(2012) examined the county-level data in Shanghai, Jiangsu, and Zhejiang for 2009. They found
that the agglomeration effects are almost zero or even negative. Although it is challenging to
identify the source of varying impacts of agglomeration economies in these previous works, our
paper highlights the role of firm heterogeneity in determining agglomeration externalities.

The rest of this paper is structured as follows. Section 2 describes our empirical model and
estimation method. Section 3 presents data sources and shows the geographic distribution of
manufacturing firms and urban population in the Yangzi River Delta, using the geographical
information system (GIS). Section 4 reports the empirical results, and Section 5 concludes.

2Rosenthal and Strange (2001) and Ellison et al. (2010) empirically analyzed the causes of industrial agglomer-
ation using the Ellison and Glaeser (1997, hereafter EG) agglomeration index. However, their analysis focused on
the relationship between the EG index and proxy variables of input sharing, labor market pooling, and knowledge
spillovers at the industry level.
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2 Model and estimation methods

2.1 Model

Let us consider that firmf produces outputYf using the following production technology:

Yf = T f K
βK

f LβL

f , f = 1,2, . . . ,NF , (1)

whereK f andL f denote capital and labor, respectively.βK andβL are parameters.NF andT f

denote the total number of firms and total factor productivity (TFP). We assume thatT f depends
on the following factors:

logT f = βA logAf + βhhf + βEXDEX
f +

∑NC

c=1
αcD

C
c f + ε f , (2)

whereAf denotes the degree of localized industrial agglomeration faced by a firmf . Its elas-
ticity βA indicates the magnitude of agglomeration effects (localization economies).hf denotes
the average educational level of firm’s employees.DEX

f represents the export dummy variable
such thatDEX

f = 1 if firm f engages in exporting. The export dummy is introduced because
several previous studies have argued that the more productive firms are likely to conduct export
business (Bernard et al., 2007).

DC
c f is a dummy variable such thatDC

c f = 1 if firm f is located in countyc. Its parameter
αc indicates the degree of unobserved local advantage in countyc. We add this term to capture
the differences among counties’ productivity, which arise in part from differences in regional
comparative advantages. Further,αc can be spatially autocorrelated if the productivity level in
countyc is more similar to that in its neighboring regions than to that in regions far removed
from countyc. For example, local advantages in one county, arising from local climate, infras-
tructure, natural resources and so on, are likely to have an impact on the productivity not only
within that county, but also in the other nearby counties. This implies that local advantages
increase productivity beyond a county’s border, causing spatial autocorrelation. In addition,
if there exist positive external effects from urbanization, called urbanization economies, the
degree of urbanization in countyc positively affects the level ofαc.

To represent these effects of spatial autocorrelation and urbanization economies, we specify
the following spatially autoregressive model:

αc = µ0 + µU logUc + ρ
∑NC

j=1
wc jα j + uc, c = 1,2, . . . ,NC , (3)

whereNC and logUc denote the number of counties and degree of urbanization in countyc,
respectively.uc is an error term.µ0, µU , andρ are parameters.µU andρ represent the magnitudes
of urbanization economies and spatial autocorrelation, respectively.wc j is specified aswc j =

dc j/
∑NC

j dc j; dc j is a binary variable such thatdc j = 1 if countiesc and j are neighbors, and is
zero otherwise. We use the concept of queen type binary contiguity (Anselin 1988, p. 18) as
the definition of neighbors, such that countiesc and j are regarded as neighbors (dc j = 1) if they
have a common land or river border.3

3Chongming is an island county in Shanghai. As it dose not have a land border, we assume that Chongming
neighbors on Pudongxin (Shanghai) and Qidong (Jiangsu). Zhejiang also contains four island counties: Zhoushan
district, Daishan, Shengsi and Dongtou. We regard the closest continental or island county as these counties’
neighbors:
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Finally, we introduce fixed effects of industry and ownership as follows:

ε f =
∑NI

i=2
ϕIi D

I
i f + ϕFODFO

f + η f , (4)

whereϕIi andϕFO are parameters.η f is an error term.DI
i f andDFO

f are dummy variables such
that

DI
i f = 1 if f belongs to industryi, and zero otherwise;

DFO
f = 1 if f receives foreign capital or capital from Hong Kong, Macao, or Taiwan (HMT),

and zero otherwise.

NI denotes the number of industries.η f is an unobservable random effect on productivity.
Taking logarithms on both sides of Equation (1), and substituting Equations (2) and (4) for

(1), we obtain our empirical model as follows:

yf = βAxf + zfβ + DC
f α + η f

α = Hµ + ρWα + u
(5)

whereyf = logYf , xf = logAf , and

zf =
[
hf DEX

f logK f logL f D f

]
,

DC
f =

[
DC

1 f DC
2 f . . . DC

NC f

]
,

D f =
[
DI

2 f DI
3 f . . . DI

NI f DFO
f

]
,

β =
[
βh βEX βK βL ϕ

′
]′
,

α =
[
α1 α2 . . . αNC

]′
,

H =
[
1 logU

]
,

µ =
[
µ0 µU

]′
,

u =
[
u1 u2 . . . uNC

]′
,

W =


w11 w12 . . . w1NC

w21 w22 . . . w2NC

...
...
. . .

...
wNC1 wNC2 . . . wNCNC

 .
Equation (5) is a spatial econometric model with a hierarchical structure of the parameterα.

• Shengsi neighbors on Daishan,

• Daishan neighbors on Zhoushan district,

• Zhoushan district neighbors on Ningbo district (a continental county), and

• Dongtou neighbors on Yuhuan (a continental county).
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2.2 Bayesian estimation

Spatial econometric models based on regional aggregate data can be generally estimated by
MLE, GMM, or Bayesian methods (Anselin, 1988, 2001; LeSage and Pace, 2009). Because we
estimate the complicated spatial model for firm-level data, it is difficult to apply MLE or GMM.
Thus, we develop a Bayesian method to estimate the hierarchical spatial model.

To identify the impact of agglomeration economies, we need to carefully take into account
endogeneity issues. Previous studies on agglomeration economies have addressed potential
correlation between the proxy of industrial agglomeration (xf = logAf ) and the error term (η f )
because regression analysis may suffer from endogeneity resulting from omitted variables and
reverse causality between productivity and agglomeration.4 For example, unobserved local en-
dowments (e.g., local climate, social infrastructure, and natural resources) may increase firm’s
productivity as well as the degree of agglomeration, leading to omitted-variables bias. Also,
high productive firms may self-select to locate their production base in agglomerated area, caus-
ing reverse causality. To minimize the endogeneity bias, we introduce a number of fixed effects
to control for unobserved local endowments in Equation (3), but a concern regarding reverse
causality remains in our model. Because IV methods offer a solution for such endogeneity, we
adopt the Bayesian IV approach proposed by Rossi et al. (2005, pp. 185–206).

Consider thatxf is a potentially endogenous variable and has a linear relationship with a set
of instruments (qf , zf , DC

f ) and an idiosyncratic shockξ f , whereqf denotes a variable related
to xf but independent of the error termsη f andξ f . We discuss the data used forqf in Section
3.1. Following Rossi et al. (2005), we specify the system of equations as follows.

xf = qfγ0 + zfγ1 + DC
f γ2 + ξ f (6)

yf = βAxf + zfβ + DC
f α + η f

α = Hµ + ρWα + u
(7)

This system shows the case of structural Equations (7) with one endogenous variable and multi-
ple instruments. In this paper, Equations (6) and (7) are referred to as the IV model and Equation
(5) as the Non-IV model.

We assume thatξ f , η f andu have the following multivariate normal distributions:(
ξ f

η f

)
∼ MVN(0, Σ), u ∼ MVN(0, τ2I ), (8)

whereΣ is a (2× 2) covariance matrix andI is an identity matrix. Independent priors for the
unknown parameters are specified as(

γ0

γ1

)
∼ MVN(b̄γ, B̄γ), γ2 | µγ2, σ

2
γ2
∼ N(µγ21, σ

2
γ2

I ),(
βA

β

)
∼ MVN(b̄β, B̄β), Σ ∼ IW(b̄Σ, B̄Σ),

µ ∼ MVN(b̄µ, B̄µ), ρ ∼ U(λ−1
min, λ

−1
max), τ

2 ∼ IG(ν̄τ/2, ω̄τ/2),

µγ2 ∼ N(b̄µγ, B̄µγ), σ2
γ2
∼ IG(ν̄γ/2, ω̄γ/2),

(9)

4For detailed discussion about the endogeneity problems in this literature, refer to Eberts and McMillen (1999),
Rosenthal and Strange (2004), Cohen and Paul (2009), and Puga (2010).
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where IW(), IG() and U() denote the inverted wishart distribution, the inverted gamma dis-
tribution, and the uniform distribution, respectively. The prior parameters areb̄γ, B̄γ, b̄β, B̄β,
b̄µ, B̄µ, b̄µγ, B̄µγ, b̄Σ, B̄Σ, ν̄γ, ω̄γ, ν̄τ, ω̄τ, λmin andλmax. Theλmin andλmax denote the small-
est and the largest eigenvalue ofW, respectively. We limit the parameter space ofρ such as
λ−1

min < ρ < λ
−1
max.

5 The values of the other prior parameters are assumed as follows:

b̄γ = 0, b̄β = 0, b̄µ = 0, b̄µγ = 0, b̄Σ = 2,

B̄γ = 100I , B̄β = 100I , B̄µ = 100I , B̄µγ = 100, B̄Σ = 2I ,

ν̄γ = ω̄γ = ν̄τ = ω̄τ = 0.001.

We set these priors to have a very large variance in order to ensure that our prior beliefs for
unknown parameters are non-informative.

Based on the technique proposed by Rossi et al. (2005), we develop a Gibbs-within-
Metropolis sampler, which is a Markov Chain Monte Carlo (MCMC) method (Gamerman and
Lopes, 2006, p. 213) for the model in Equations (6)–(9). The sampler allows us to generate
samples from the joint posterior distribution and the marginal posterior distributions for each
parameter. Using the generated samples, we can statistically infer the unknown parameters.

The Gibbs-within-Metropolis sampling for our model is based on the followingf ull condi-
tional distributions:

βA,β | Θ−(βA, β),Data

α | Θ−α,Data

γ0,γ1 | Θ−(γ0, γ1),Data

γ2 | Θ−γ2
,Data

Σ | Θ−Σ,Data

µ | Θ−µ,Data

ρ | Θ−ρ,Data

τ2 | Θ−τ2,Data

µγ2 | Θ−µγ2 ,Data

σ2
γ2
| Θ−σ2

γ2
,Data

(10)

whereΘ−β denotes the set of the unknown parameters except forβ. All the above distributions
except forρ can be straightforwardly derived and belong to well-known distribution families,
enabling us to apply the Gibbs sampling technique. However,ρ’s full conditional density func-
tion is not standard; it can be written as

P(ρ | Θ−ρ,Data)

∝ |I − ρW| exp

{
− 1

2σ̂2
ρ

(ρ − ρ̂)2

}
I [ρ ∈ (λ−1

min, λ
−1
max)] ,

(11)

where

σ̂2
ρ =

[
τ−2α′W′Wα

]−1
, (12)

ρ̂ = σ̂2
ρτ
−2α′W′(α − Hµ). (13)

5This restriction is necessary to ensure that the determinant ofI − ρW is positive.
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I [ρ ∈ (λ−1
min, λ

−1
max)] is an indicator function that takes on unity ifρ ∈ (λ−1

min, λ
−1
max). To generate

a sample from this density, we use the Metropolis–Hastings (MH) technique.6 The candidate
generating function used in the MH algorithm is a normal distribution truncated on the interval
(λ−1

min, λ
−1
max), with the mean ˆρ and the variance ˆσ2

ρ. Sampling from these conditionals in Equation
(10) is repeated 400,000 times; the initial 50,000 replications were discarded and a statistical
inference was made from the remaining 350,000 replications.

3 Data and choropleth maps

3.1 Data description

Our data source is the Chinese industry statistical database by China’s National Bureau of Statis-
tics. This database is based on the annual survey of industrial enterprises in mainland China with
sales of more than five million yuan, including state-owned enterprises, privately-owned firms,
and foreign-invested enterprises. As the survey is mandatory for firms to respond, the sample
coverage is comprehensive.7 This dataset has been used in prior research such as Brandt et al.
(2011).

The 2004 survey is more comprehensive than other years’ in that the survey information
includes the level of employee education. To measure employees’ educational levelhf , we
exclusively use 2004 data. Our analysis focuses on manufacturing industries in four province
level regions in east-central China: Shanghai city and Jiangsu, Zhejiang, and Anhui provinces.
These regions constitute China’s three major areas of industrial agglomeration; other areas in-
clude the Bohai Economic Rim around Beijing and Tiangjin and the Pearl River Delta area in
Guangdong. As the remarkable growth of industrial activities and international trade in these
areas has driven the Chinese economy, our sample is ideal to analyze the impact of industrial
clusters on firm-level performance.

Using the 2004 database, we construct the variablesYf , K f , L f , hf , U f , Af andqf as follows.
Yf is constructed as firm’s value added. We exclude sample firms with negative values of value
added and out-of-operation status.K f is the sum of fixed and intangible assets.L f is the number
of employees. To measurehf , we use the average years of schooling as follows:

hf = 18

LG
f

L f

 + 16

LU
f

L f

 + 14

LC
f

L f

 + 12

LH
f

L f

 + 9

LJ
f

L f

 , (14)

whereLG
f , LU

f , LC
f , LH

f , and LJ
f denote the number of graduate school-educated, university-

educated, community college-educated, high school-educated, and junior high school- or under-
educated employees, respectively. The county-level urbanizationUc is measured by county
urban population divided by land area (urban population density). The localization indexAf

is alternatively proxied by the variablesFD f , LD f or FNf . Specifically,FD f andLD f denote
the density of the number of firms and labor in the same county and industry as firmf . FNf

denotes the number of firms in the same county and industry as firmf . We construct the
industry-dummy variablesDI

i f using China’s two-digit industrial classification, which contains

6For more details on the Metropolis–Hastings and Gibbs sampling techniques, refer to Gamerman and Lopes
(2006, Chapters 5 and 6).

7For example, the survey includes 330,000 enterprises in China for 2007, which accounted for nearly 90% of
total industrial output as reported in the China statistical yearbook.
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NI = 29 industries excluding the tobacco industry. The county-dummy variablesDC
c f are based

on NC = 223 counties, and Tables 4–6 contain the list of county names. The data on total land
area at the county-level region are obtained from China’s 2005 county statistical yearbook and
China’s individual statistical yearbooks of Shanghai, Jiangsu, Zhejiang, and Anhui.

Finally, we explainqf which is an instrument ofxf . The data onqf is the logarithm of the
1990 density of labor in the same county and industry as firmf . This data should be valid as an
instrument because it is natural to consider that the labor density 14 years ago does not affect
2004 firm-level productivity, but the formulation process of industrial agglomeration from 1990
to 2004. The 1990 labor density may be correlated with 1990 local advantages which probably
affect the 2004 firm-level productivity, and thusqf may indirectly affect the 2004 firm-level
productivity. However, we control for this indirect effect by the county-level fixed effects in
Equation (3), making our data onqf a valid instrument ofxf .

[Table 1 around here]

Table 1 reports summary statistics of the sample used for analysis, which includes 97,947
manufacturing firms after excluding 23 firms in the tobacco industry. There are nearly 40,000
firms in Jiangsu and Zhejiang, 14,554 firms in Shanghai, and 4,125 firms in Anhui. The average
production measured by logY is relatively lower in Jiangsu and Zhejiang, indicating that smaller
firms tend to locate in these areas. This observation appears to be supported by the average
levels of measured capital. The variableIS is the value of a firm’s intermediate inputs divided
by its gross output, which we use in Section 4.2 in the analysis of heterogeneity in localization
effects. The average of logIS reveals that Zhejiang has the highest value, followed by Jiangsu,
Anhui, and Shanghai. This outcome indicates that firms in Jiangsu and Zhejiang are relatively
small and have greater input sharing. Regional differences appear to be relatively small in the
number of employees (logL) and their educational attainment (h). Our measure of localization
indicates a large difference between coastal and inland provinces. Shanghai has the highest
degree of localization for all three variables whereas Anhui has the lowest. There are relatively
minor differences between Jiangsu and Zhejiang. Finally, Shanghai has the highest degree of
urbanization, followed by Jiangsu, Anhui, and Zhejiang.

3.2 Geographic distribution of firms and urban population

[Figure 1 around here]

Figure 1 illustrates the number of firms per county land area (firm density) and urban population
density.8 There appears to be substantial agglomeration of manufacturing firms along the coastal
provinces such as Jiangsu, Shanghai, and Zhejiang. Huangpu9 (id = 1) exhibits the highest
firm density and a highly agglomerated area spans from Shanghai to southern Jiangsu province
(around the Wuxi district (15)) and from Shanghai to northeast Zhejiang province, including
Hangzhou (77), Shaoxing (108), and Ningbo (83) districts. The Taizhou (130, 131, 135) and
Wenzhou (89, 96, 97) areas and Yiwu (119), Yonkang (121), Hefei district (146), and Wuhu

8China’s county-level GIS map (shapefile) is obtained from All China Marketing Research Co., Ltd. (2005),
and the polygon of the Yangzi River is downloaded from the DIVA-GIS web-site:http://www.diva-gis.org/

(accessed July 18, 2012). These maps are drawn with R version 2.9.2 (R Development Core Team, 2009).
9Huangpu includes the following nine county-level regions: Huangpu, Luwan, Xuhui, Changning, Jingan,

Putuo, Zhabei, Hongkou, and Yangpu. Because these regions’ land areas are quite small, we merge them into one
composite called Huangpu et al.

9



district (150) exhibit relatively high firm agglomeration. In contrast, firms in Anhui province
face a relatively smaller degree of manufacturing agglomeration, but Anhui’s capital (Hefei
district, 146) and counties along the Yangzi river (150, 152, 160, 161, 164, 166) exhibit a
relatively high degree of firm density.

As with firm density, the figure of urban population density indicates that Shanghai, southern
Jiangsu, and northeast and southeast Zhejiang exhibit high urban population density.10 How-
ever, counties in northwest Anhui have relatively greater urban population density, which ap-
pears to be more dispersed than that of manufacturing firms.

[Figure 2 around here]

To assess whether the degree of spatial concentration differs between manufacturing firms
and urban population, we draw the Moran scatterplots and calculate Moran’sI statistics (Figure
2). The dashed lines represent the averages of each axis, and the solid line is the regression
line. The horizontal axis (xc) is the deviation from the mean of firm density or urban population
density, and the vertical axis (yc) is the neighboring averages of the deviation values, calculated
byyc =

∑NC
j wc jxj. When using a low-standardized spatial weight

∑NC
j wc j = 1, the coefficient of

the regression line is equivalent to Moran’sI statistic which indicates the degree of geographic
concentration.11 The Moran scatterplots quadrants separated by the dashed lines correspond to
four relationships between a region and its neighbors. More specifically,

1. HH: a region plotted in the first quadrant (HH area) has a high value (above the mean) and
is surrounded by regions with high values;

2. LH: a region in the second quadrant (LH area) has a low value but is surrounded by regions
with high value;

3. LL: a region in the third quadrant (LL area) has a low value and is surrounded by regions
with low value; and

4. HL: a region in the fourth quadrant (HL area) has a high value but is surrounded by regions
with low values.

As Figure 2 shows, Moran’sI coefficient is 0.7857 for firm density and 0.6403 for urban popu-
lation density, indicating that the degree of spatial clustering in the firms’ density is greater than
that of urban population density. Intuitively speaking, manufacturing firms concentrate over
space more than urban inhabitants.

Because Moran’sI does not provide the information about the location of clusters, we cal-
culated the local Moran statistics (Anselin, 1995). The local Moran test is a location-specific
statistical test, and enables us to investigate whether the local relationship (HH, LH, LL, or HL)
for each locationc differs significantly from the random location relationship.12

[Figure 3 around here]

10The correlation coefficient between firm density and urban population density is 0.683.
11The Moran’sI coefficients are calculated using the spatial weighting matrixW defined in Equation (5).
12Because the exact distribution of the local Moran statistic under the randomization (or random location) hy-

pothesis is unknown, we used the random permutation approach proposed by Anselin (1995). The randomization
test was performed using 9,999 permutations and we obtained pseudo significance levels from the 2.5% and 97.5%
quantile points of this simulated distribution.
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Figure 3 depicts the results of the local Moran test. The 5% significance means that the ran-
dom location hypothesis is rejected at the 5% significance level. The regions around Shanghai
have a significant HH relationship for both maps, confirming a local, significant high-value clus-
ter around Shanghai. Compared to urban population density, the firm density covers a broader
range. However, the location of the local significant low-value cluster (LL) differs between
the maps. The firm density map depicts the main low-value cluster west of Anhui, whereas
the urban population density map shows the low-value cluster ranging from southern Anhui to
western Zhejiang. In sum, the geographic distributions of manufacturing activities and urban
population differs in the degree of spatial concentration and the range and location of clusters,
implying that these two may have a different impact on firm-level productivity.

4 Results

4.1 Estimation results

[Table 2 around here]

Table 2 reports the estimation results of the model in Equations (6)–(9).13 We perform the
estimation separately for three localization variables: the firm density (logFD f ), the density
of labor (logLD f ), and the number of firms (logFNf ). The posterior means ofβK and βL

are roughly 0.21 and 0.60, respectively. The coefficients of the export dummy and average
years of schooling (βEX andβh) are also positive and significant, consistent with our prediction.
Furthermore, the posterior means ofρ are positive (roughly 0.53) and significant, demonstrating
that a positive spatial autocorrelation exists in the unobserved local advantage (α) and that our
hierarchical spatial modeling is effective and meaningful.

The posterior means ofβA are 0.022, 0.009, and 0.033 across alternative specifications.
The 95% credible intervals for logFD and logFN do not contain zero. On the other hand,
logLD intervals contain zero, but the posterior probability ofβA > 0 is 93.81%. These results
indicate that agglomeration of the same industry has a significant positive effect on firm-level
productivity. The magnitude of these estimates are similar to that of Au and Henderson (2006),
Henderson (2003) and other previous studies. Their estimates of agglomeration economies
were 0.013 in Au and Henderson (2003) and 0.024 in Henderson (2003) on average. According
to Melo et al. (2009)’s meta-analysis, an average of estimates in manufacturing taken from
early studies is 0.0175 (Melo et al., 2009, Table 1). Our estimates (0.009–0.033) imply that a
doubling of firm’s agglomeration increases firm’s productivity by around 0.9–3.3%.

However, the posterior means ofµU are -0.0007, 0.0274, and 0.015. Their 95% credible
intervals contain zero for all three cases. In addition, the posterior probabilities ofµU > 0 are
48.14%, 92.79%, and 80.83%, respectively. These results do not provide conclusive evidence
of the positive relationship between agglomeration of urban population and a county-level pro-
ductivity. Agglomeration economies for manufacturing firms are relatively localized within the
same industry, but urbanization does not necessarily increase manufacturing firm productivity.
These results are consistent with the study by Henderson (2003). The reason is that urbanization
can greatly increase production costs and reduce the competitiveness in manufacturing sectors.

13The estimation is implemented withOx version 6.20 (Doornik, 2006).
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We proceed to compare the estimation results of IV- and Non-IV-based models. Because
the posteriors of all parameters exceptβA are similar among these models, we report only the
results ofβA.

[Figure 4 around here]

Figure 4 depicts IV- and Non-IV-based posterior distributions ofβA. The IV-based posterior is
located more to the left and exhibits higher dispersion. More specifically, the posterior means
of the Non-IV model are 0.036 for logFD, 0.022 for logLD, and 0.036 for logFN. Their
standard deviations are 0.0034, 0.0030, and 0.0034, respectively. These results indicate that the
endogenous bias in the posterior means is upward, and the bias in the posterior dispersion is
downward. Thus, our Non-IV estimates may be over-estimated. The upward bias suggests that
more productive firms are attracted to the agglomeration area as is predicted in the economic
geography model of firm heterogeneity in Baldwin and Okubo (2006). Nevertheless, the IV-
based posteriors remain largely distributed in the positive area, indicating that agglomeration of
the same industry has a causal positive effect on firm-level productivity.

4.2 Firm heterogeneity in localization effects

In this subsection, we investigate whether the magnitude of localization economies depends
on firm specific characteristics such as average years of employee educationhf , engagement
in export businessDEX

f , degree of input sharingIS f , period (months) of operationMOf , and
ownershipDFO

f . Based on the Non-IV model, we introduce the following cross product:

logT f = βhhf + βEXDEX
f + βIS log IS f + βMO log MOf +

∑NC

c=1
αcD

C
c f

+
(
βA + βA.hhf + βA.EXDEX

f + βA.IS log IS f + βA.MO log MOf + βA.FODFO
f

)
logAf + ε f ,

(2′)

whereβA.h, βA.EX, βA.IS, βA.FO, andβA.MO are parameters.DEX
f and DFO

f denote export and
foreign-ownership dummies, respectively.14 Following previous studies such as Holmes (1999),
Rosenthal and Strange (2001), and Ellison et al. (2010), we construct the index of input sharing
IS f from the value of a firm’s intermediate inputs divided by its gross output.MOf represents
the number of months in operation.
βA.h should be positive if a firm’s ability to absorb positive localization effects is significantly

important. We predict thatβA.IS should be positive because industrial agglomeration can reduce
the costs of obtaining inputs, called input sharing effects (Duranton and Puga 2004). That is,
firms highly dependent on intermediate inputs are more likely to gain such positive agglom-
eration effects. For the number of months in operationMOf , we hypothesize that older firms
are more likely than newer firms to possess business know-how and an efficient (cost-saving)
network of inter-firm relationships to survive in the market. If these advantages accumulate
through experience and are significantly important to access localization economies, the coeffi-
cientβA.MO would be positive.

[Table 3 around here]

14The analysis of firm heterogeneity in localization effects does not use instrumental variable techniques because
valid instruments for the cross products are not available.
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To save space, Table 3 reports the estimation results only for the coefficients of the cross
products in Equation (2′). The posterior probabilities ofβA.h > 0 and ofβA.IS > 0 exceed 90%
for all three cases, indicating that agglomeration effects from localization positively correlate
with employee educational levels and the ratio of intermediate inputs to gross output. The
posterior probabilities ofβA.EX > 0 are 37.95% for logFD, 97.42% for logLD, and 29.82% for
logFN. There is no clear relationship between localization effects and export. Moreover, the
posterior ofβA.FO is inconsistent among the three cases, such that the probability ofβA.FO > 0
is significantly high for logLD (99.69%), but 91.45% and 76.28% for the other two cases,
and their 95% credible intervals contain zero. We did not observe strong evidence for the
relationship between localization effects and firm ownership.

Furthermore, it is noteworthy that the posterior probabilities ofβA.MO > 0 are only approx-
imately 0.01%, 28.8%, and 1.36%, respectively, and the 95% credible intervals do not contain
zero for logFD and logFN. These posterior distributions are largely distributed in the negative
area, indicating a negative relationship between months of operation and degree of localization
effects. This result suggests that new firms are more likely to obtain higher positive localization
effects. However, the posterior means ofβMO, which is the coefficient of logMOf (not shown in
Table 3), are 0.0165 for logFD, 0.0368 for logLD, and 0.0524 for logFN. These estimates are
significant for all three cases. These results indicate that old firms are more productive than new
firms.15 Although new firms have relatively lower productivity than old firms, they are more
likely to obtain the positive externalities from localization.

In sum, the analysis highlights that localization effects differ by individual firms. Industrial
agglomeration yields larger productivity-boosting effects for the firms that use more intermedi-
ate inputs, employ more educated workers, and are young in business operations. By contrast,
there is no evidence that exporting and foreign ownership enable firms to benefit more from
industrial clusters.

5 Conclusions

This paper estimates the magnitude of agglomeration effects in the Yangzi River Delta, China,
using 2004 manufacturing firm-level data. We employ a hierarchical spatial model to deal with
spatial autocorrelation of unobserved local endowments. To resolve potential endogeneity bias
in agglomeration, a Bayesian instrumental-variables technique is applied for the hierarchical
spatial model. These approaches enable us to investigate the difference between IV- and non-IV
based posterior distributions. Our main findings show that the estimates of spatial autocorre-
lation are significantly positive, indicating that our hierarchical spatial modeling is effective
and meaningful. Robust to the Bayesian IV estimation, agglomeration economies for man-
ufacturing firms are largely localized within the own industry whereas urbanization does not
necessarily have a productivity-boosting effect on manufacturing firms. Additionally, the local-
ization effects increase with educational levels of employees and the degree of input sharing,
highlighting that technology spillovers and input sharing can serve as crucial channels through
which localization effects boost firm-level productivity.

Although our paper sheds light on agglomeration economies in China, there are remaining

15The estimation results ofβMO are inconsistent with Lin et al. (2011). Their estimations are based on firm-
level panel data of China’s textile industry from 2000 to 2005; they found a negative relationship between years of
operation and firm’s productivity.
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issues for future research. We can make an extension to analyze firm-level panel data, which
would allow us to examine a short-run effect of agglomeration across years. Also, long-period
panel data would enable us to compare net agglomeration economies across the stages of eco-
nomic development in China. As Brülhart and Sbergami (2009) find evidence for the inverse
U-shaped relationship between agglomeration and growth, the net magnitude of agglomeration
effects may recently change in the Yangzi River Delta. Furthermore, the use of panel data would
allow us to control for unobserved shocks to production and self-selection bias due to decisions
on plant location. It is a challenging task to take into account these dynamic issues in a spatial
econometric model, but crucial for identifying dynamic impacts of agglomeration processes on
firm’s productivity.
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Table 1: Summary statistics

Mean Stdev Min Max
Value-added (logY) 8.352 1.216 0.000 17.155
Number of Labor (logL) 4.475 1.032 0.000 10.698
Capital stock value (logK) 8.081 1.690 0.000 17.635
Average years of schooling (h) 10.413 1.138 9.000 17.052
Share of intermediate inputs (logIS) -0.297 0.205 -8.229 -0.00003
Months in operation (logMO) 4.139 0.893 0.000 7.824
Localization (logA)

logFD -2.831 1.513 -8.401 -0.217
logLD 2.145 1.651 -5.950 5.157
logFN 4.289 1.429 0.000 6.930

Urbanization
logU 395.813 852.654 39.148 12295.540

Sample size: 97947

By region: Shanghai Jiangsu Zhejiang Anhui All
Number of firms 14554 39591 39677 4125 97947
Number of county-level regions 11 65 69 78 223
Total land area (sq. km) 6340.5 100874 103641 138790 349645.5
Mean of logY 8.480 8.444 8.200 8.470 8.352
Mean of logK 8.143 8.018 8.096 8.336 8.081
Mean of logL 4.430 4.460 4.484 4.677 4.475
Mean ofh 10.687 10.534 10.155 10.778 10.413
Mean of logIS -0.355 -0.307 -0.259 -0.350 -0.297
Mean of logMO 4.325 4.111 4.106 4.071 4.139
Localization (logA)

Mean of logFD -1.777 -2.933 -2.875 -5.156 -2.831
Mean of logLD 3.211 2.071 2.058 -0.061 2.145
Mean of logFN 4.413 4.374 4.405 1.914 4.289

Urbanization
Mean of logU 1967.737 394.010 277.143 280.539 395.813

Notes: Stdev denotes standard deviation. Value-added (Y) and capital (K) is in thousand yuan; labor (L) is in persons;
h is average years of employee schooling.FD andLD are the density (per unit county’s land area) of total number
of firms and labor, respectively, in the same industry and county as firmf . FN is the number of firms in the same
industry and county as firmf . U is county-level urban population density (per county land area unit).
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Table 2: Estimation results
Mean Stdev 95%CI

logAf = logFD f

βA 0.0220 (0.0052) [0.012, 0.032]
βh 0.1487 (0.0032) [0.142, 0.155]
βEX 0.0260 (0.0064) [0.013, 0.039]
βK 0.2102 (0.0021) [0.206, 0.214]
βL 0.5941 (0.0037) [0.587, 0.601]
µ0 1.2737 (0.2410) [0.813, 1.765]
µU -0.0007 (0.0165) [-0.033, 0.032]
ρ 0.5265 (0.0847) [0.351, 0.688]

logAf = logLD f

βA 0.0099 (0.0065) [-0.003, 0.023]
βh 0.1527 (0.0028) [0.147, 0.158]
βEX 0.0259 (0.0065) [0.013, 0.039]
βK 0.2104 (0.0021) [0.206, 0.215]
βL 0.5954 (0.0035) [0.588, 0.602]
µ0 0.9780 (0.2249) [0.559, 1.445]
µU 0.0274 (0.0190) [-0.009, 0.065]
ρ 0.5559 (0.0813) [0.386, 0.709]

logAf = logFNf

βA 0.0329 (0.0057) [0.021, 0.044]
βh 0.1556 (0.0027) [0.150, 0.161]
βEX 0.0230 (0.0064) [0.010, 0.036]
βK 0.2099 (0.0021) [0.206, 0.214]
βL 0.5976 (0.0035) [0.591, 0.604]
µ0 1.0414 (0.2230) [0.620, 1.498]
µU 0.0159 (0.0182) [-0.020, 0.052]
ρ 0.5340 (0.0841) [0.360, 0.692]
Sample size: 97947

Notes: Stdev and 95%CI denote standard deviation and 95% credible
interval, respectively, of the posterior distribution for each parameter.
The inverse of minimum and maximum eigen values of the spatial
weight matrixW areλ−1

min = −1.110 andλ−1
max= 1.000, respectively.
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Table 3: Estimates of cross products

Mean 95%CI Prob (x > 0) (%)
logAf = logFD f

βA.h 0.0028 [-0.0001, 0.006] 97.05
βA.IS 0.0451 [0.029, 0.061] 100.00
βA.EX -0.0011 [-0.008, 0.006] 37.95
βA.MO -0.0063 [-0.010, -0.003] 0.01
βA.FO 0.0063 [-0.003, 0.015] 91.45

logAf = logLD f

βA.h 0.0080 [0.005, 0.011] 100.00
βA.IS 0.0767 [0.062, 0.091] 100.00
βA.EX 0.0068 [-0.00005, 0.014] 97.42
βA.MO -0.0009 [-0.004, 0.002] 28.80
βA.FO 0.0117 [0.003, 0.020] 99.69

logAf = logFNf

βA.h 0.0024 [-0.001, 0.006] 92.47
βA.IS 0.0353 [0.017, 0.053] 100.00
βA.EX -0.0021 [-0.010, 0.006] 29.82
βA.MO -0.0040 [-0.008, -0.0004] 1.36
βA.FO 0.0035 [-0.006, 0.013] 76.28
Sample size: 97947

Notes: 95%CI denotes 95% credible interval of the posterior distribution for each pa-
rameter. Prob (x > 0) denotes the positive area of each posterior distribution.
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Figure 2: Moran scatterplots

Notes: The firm density is defined as the number of manufacturing firms in a county-level region divided by the
region’s land area. The urban population density is defined as urban population in a county-level region divided by
the region’s land area.
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Table 4: List of county names

id Prefecture-level County-level id Prefecture-level County-level

1 Shanghai Huangpu∗ 41 Lianyungang Lianyungang Dist.
2 Shanghai Minxing 42 Lianyungang Ganyu
3 Shanghai Baoshan 43 Lianyungang Donghai
4 Shanghai Jiading 44 Lianyungang Guanyun
5 Shanghai Pudongxin 45 Lianyungang Guannan
6 Shanghai Jinshan 46 Huaiyin Huaiyin Dist.
7 Shanghai Songjiang 47 Huaiyin Lianshui
8 Shanghai Qingpu 48 Huaiyin Hongze
9 Shanghai Nanhui 49 Huaiyin Xuyi
10 Shanghai Fengxian 50 Huaiyin Jinhu
11 Shanghai Chongming 51 Yancheng Yancheng Dist.
12 Nanjing Nanjing Dist. 52 Yancheng Xiangshui
13 Nanjing Lishui 53 Yancheng Binhai
14 Nanjing Gaochun 54 Yancheng Funing
15 Wuxi Wuxi Dist. 55 Yancheng Sheyang
16 Wuxi Jiangyin 56 Yancheng Jianhu
17 Wuxi Yixing 57 Yancheng Dongtai
18 Xuzhou Xuzhou Dist. 58 Yancheng Dafeng
19 Xuzhou Fengxian 59 Yangzhou Yangzhou Dist.
20 Xuzhou Peixian 60 Yangzhou Baoying
21 Xuzhou Tongshan 61 Yangzhou Yizheng
22 Xuzhou Suining 62 Yangzhou Gaoyou
23 Xuzhou Xinyi 63 Yangzhou Jiangdu
24 Xuzhou Pizhou 64 Zhenjiang Zhenjiang Dist.
25 Changzhou Changzhou Dist. 65 Zhenjiang Danyang
26 Changzhou Liyang 66 Zhenjiang Yangzhong
27 Changzhou Jintan 67 Zhenjiang Jurong
28 Suzhou Suzhou Dist. 68 Taizhou Taizhou Dist.
29 Suzhou Changshu 69 Taizhou Xinghua
30 Suzhou Zhangjiagang 70 Taizhou Jingjiang
31 Suzhou Kunshan 71 Taizhou Taixing
32 Suzhou Wujiang 72 Taizhou Jiangyan
33 Suzhou Taicang 73 Suqian Suqian Dist.
34 Nantong Nantong Dist. 74 Suqian Shuyang
35 Nantong Haian 75 Suqian Siyang
36 Nantong Rudong 76 Suqian Sihong
37 Nantong Qidong 77 Hangzhou Hangzhou Dist.
38 Nantong Rugao 78 Hangzhou Tonglu
39 Nantong Tongzhou 79 Hangzhou Chunan
40 Nantong Haimen 80 Hangzhou Jiande

Notes: * Huangpu (id = 1) includes the following nine county-level regions: Huangpu, Luwan,
Xuhui, Changning, Jingan, Putuo, Zhabei, Hongkou, and Yangpu. Because the areas of these regions
are quite small, we aggregate them into one composite. “Dist.” is the abbreviation for “District.”
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Table 5: List of county names (continued)

id Prefecture-level County-level id Prefecture-level County-level

81 Hangzhou Fuyang 121 Jinhua Yongkang
82 Hangzhou Linan 122 Quzhou Quzhou Dist.
83 Ningbo Ningbo Dist. 123 Quzhou Changshan
84 Ningbo Xiangshan 124 Quzhou Kaihua
85 Ningbo Ninghai 125 Quzhou Longyou
86 Ningbo Yuyao 126 Quzhou Jiangshan
87 Ningbo Cixi 127 Zhoushan Zhoushan Dist.
88 Ningbo Fenghua 128 Zhoushan Daishan
89 Wenzhou Wenzhou Dist. 129 Zhoushan Shengsi
90 Wenzhou Dongtou 130 Taizhou Taizhou Dist.
91 Wenzhou Yongjia 131 Taizhou Yuhuan
92 Wenzhou Pingyang 132 Taizhou Sanmen
93 Wenzhou Cangnan 133 Taizhou Tiantai
94 Wenzhou Wencheng 134 Taizhou Xianju
95 Wenzhou Taishun 135 Taizhou Wenling
96 Wenzhou Ruian 136 Taizhou Linhai
97 Wenzhou Leqing 137 Lishui Lishui Dist.
98 Jiaxing Jiaxing Dist. 138 Lishui Qingtian
99 Jiaxing Jiashan 139 Lishui Jinyun
100 Jiaxing Haiyan 140 Lishui Suichang
101 Jiaxing Haining 141 Lishui Songyang
102 Jiaxing Pinghu 142 Lishui Yunhe
103 Jiaxing Tongxiang 143 Lishui Qingyuan
104 Huzhou Huzhou Dist. 144 Lishui Jingning
105 Huzhou Deqing 145 Lishui Longquan
106 Huzhou Changxing 146 Hefei Hefei Dist.
107 Huzhou Anji 147 Hefei Changfeng
108 Shaoxing Shaoxing Dist. 148 Hefei Feidong
109 Shaoxing Shaoxing 149 Hefei Feixi
110 Shaoxing Xinchang 150 Wuhu Wuhu Dist.
111 Shaoxing Zhuji 151 Wuhu Wuhu
112 Shaoxing Shangyu 152 Wuhu Fanchang
113 Shaoxing Shengzhou 153 Wuhu Nanling
114 Jinhua Jinhua Dist. 154 Bengbu Bengbu Dist.
115 Jinhua Wuyi 155 Bengbu Huaiyuan
116 Jinhua Pujiang 156 Bengbu Wuhe
117 Jinhua Panan 157 Bengbu Guzhen
118 Jinhua Lanxi 158 Huainan Huainan Dist.
119 Jinhua Yiwu 159 Huainan Fengtai
120 Jinhua Dongyang 160 Maanshan Maanshan Dist.

Note: “Dist.” is the abbreviation for “District.”
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Table 6: List of county names (continued)

id Prefecture-level County-level id Prefecture-level County-level

161 Maanshan Dangtu 201 Chaohu Hanshan
162 Huaibei Huaibei Dist. 202 Chaohu Hexian
163 Huaibei Suixi 203 Liuan Liuan Dist.
164 Tongling Tongling Dist. 204 Liuan Shouxian
165 Tongling Tongling 205 Liuan Huoqiu
166 Anqing Anqing Dist. 206 Liuan Shucheng
167 Anqing Huaining 207 Liuan Jinzhai
168 Anqing Zongyang 208 Liuan Huoshan
169 Anqing Qianshan 209 Bozhou Bozhou Dist.
170 Anqing Taihu 210 Bozhou Guoyang
171 Anqing Susong 211 Bozhou Mengcheng
172 Anqing Wangjiang 212 Bozhou Lixin
173 Anqing Yuexi 213 Chizhou Chizhou Dist.
174 Anqing Tongcheng 214 Chizhou Dongzhi
175 Huangshan Huangshan Dist. 215 Chizhou Shitai
176 Huangshan Shexian 216 Chizhou Qingyang
177 Huangshan Xiuning 217 Xuancheng Xuancheng Dist.
178 Huangshan Yixian 218 Xuancheng Langxi
179 Huangshan Qimen 219 Xuancheng Guangde
180 Chuzhou Chuzhou Dist. 220 Xuancheng Jingxian
181 Chuzhou Laian 221 Xuancheng Jixi
182 Chuzhou Quanjiao 222 Xuancheng Jingde
183 Chuzhou Dingyuan 223 Xuancheng Ningguo
184 Chuzhou Fengyang
185 Chuzhou Tianchang
186 Chuzhou Mingguang
187 Fuyang Fuyang Dist.
188 Fuyang Linquan
189 Fuyang Taihe
190 Fuyang Funan
191 Fuyang Yingshang
192 Fuyang Jieshou
193 Suzhou Suzhou Dist.
194 Suzhou Dangshan
195 Suzhou Xiaoxian
196 Suzhou Lingbi
197 Suzhou Sixian
198 Chaohu Chaohu Dist.
199 Chaohu Lujiang
200 Chaohu Wuwei

Note: “Dist.” is the abbreviation for “District.”
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