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wage differentials across industries based on the length of the industry’s production 
chain. A simple simultaneous production model shows that when the quality of 
intermediate inputs deteriorates rapidly along the production chains, high-skilled 
individuals choose to work in industries with shorter production chains because of 
higher returns to skill. I empirically confirm this skill-sorting pattern and these 
inter-industry skill wage differentials in India, where the quality of intermediate 
inputs is likely to degrade rapidly because of the high number of unskilled laborers, 
poor infrastructure, and less-advantaged technology. The results remain robust even 
when considering selection bias, alternative reasons for inter-industry skill wage 
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1. Introduction 

It is widely known that India’s recent economic growth has been fueled by 

service sectors such as business services (including software and information 

technology (IT)-enabled services), communications, and banking. More-traditional 

services, including hotels and restaurants, education, health, and trade and transport, 

have also undergone rapid growth (Eichengreen and Gupta, 2011). Since 1999 (up to 

2014), service industries’ share of the gross domestic product (GDP) has exceeded 50% 

in India (World Bank, 2015). This share seems large if India’s development stage is 

considered. India’s share of services in the GDP outweighed its predicted value for 

India’s income by 6 percentage points on average from 1999 to 2014.1  

One possible cause for India’s service-led growth is its skill-sorting pattern. As 

Kamath (2011) and Sohoni and Kathuria (2014) showed, many highly talented 

graduates who studied engineering at the Indian Institutes of Technology (IIT), the most 

distinguished institutions of higher education in India, go on to choose non-engineering 

occupations, such as IT, finance, and consultancy services. For example, only 33% of 

students at IIT Bombay took engineering jobs in 2013 (Sohoni and Kathuria, 2014). 

Those highly intelligent students should foster India’s manufacturing industries, but 

they do not; instead, they contribute to strengthening the competitiveness of India’s 

service sector. This skill-sorting trend operates across all of India too. Because of 

individual-level skill sorting, the workforce’s educational level tends to be higher in 

many service industries. In Figure 1, industries are sorted by the estimated number of 

completed years of education averaged over an industry’s male regular wage/salaried 

(RWS) workers. The average education level of an industry’s workforce falls in moving 

1  India’s predicted value for the share of services in GDP is computed based on the 
cross-country OLS regression of share of services in GDP on a quartic polynomial in log of 
GDP per capita for the period 1960–2014 over 215 economies. Data are extracted from the 
World Bank (2015). The service industries correspond to divisions 50–99 of the International 
Standard Industrial Classification (ISIC), revision 3. Note that they do not include construction, 
electricity, water, and gas, which are classified as services in my study. 
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from left to right across the graph. Therefore, it is clear from the graph that many 

service industries, such as insurance (industry number 53), education and research (54), 

finance (banking, etc.; 52), medical and health services (55), post and 

telecommunication (51), public administration and defense (57), railway transport (49), 

electricity (44), and other services (56), are successful in attracting relatively 

higher-educated workers. 

Why does this skill-sorting pattern occur? Kamath (2011) and Sohoni and 

Kathuria (2014) gave wage differentials as one possible cause. However, why are wages 

lower for engineering jobs compared to other service-sector jobs, such as business 

services and banking?  

This study offers one possible answer to this question. I hypothesize that 

India’s skill-sorting patterns and skill wage differentials are a result of interactions 

among India’s unequal skill distribution, low input quality, and variations in industries’ 

production chain lengths. First, producing manufacturing goods tends to require more 

intermediate inputs than needed to produce service goods. In other words, 

manufacturing industries tend to form longer production chains than service industries. 

This tendency is confirmed from the line graph in Figure 1 (or Figure 3 in Section 6). 

Second, similar to the O-ring theory by Kremer (1993), the quality of final good 

deteriorates more as more intermediate inputs are involved as a result of increased 

defect rates. For example, if the probability of a malfunction in each part is 1%, then 

that of a product composed of two units of the part becomes 1.99% 

(=1-0.99*0.99)*100). As will be discussed below, the magnitude of such quality 

deterioration is likely to be larger in a country such as India. In this case, wages in 

manufacturing industries that require many intermediate inputs are dragged down 

significantly because of substantial quality deterioration compared to wages in service 

industries. Consequently, high-skilled individuals choose not to work in manufacturing 

industries where they cannot earn wages worthy of their skills, instead choosing to work 
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in service industries. 

The quality deterioration concomitant with an increase in intermediate inputs is 

expected to be much more severe in developing countries such as India, which are 

characterized by a large pool of unskilled labor, poor infrastructure (e.g., unstable 

electricity supply and bumpy roads), and less-advanced technology. These factors all 

contribute to low-quality intermediate inputs and much higher defect rates when many 

inputs are combined. As of 2009–2010, 41% of India’s working population are either 

illiterate or literate, but they have either never received formal education or failed to 

complete primary education (based on weekly status computed from NSSO (2009–

2010)). According to the 2014–2015 Global Competitiveness Report published by the 

World Economic Forum, India ranks 103rd in terms of quality of electricity supply and 

76th in terms of quality of roads among the 144 countries included in the report (World 

Economic Forum, 2014). In addition, India’s rank in terms of local supplier quality, 

availability of latest technologies, and firm-level technology absorption is 78th, 110th, 

and 102nd, respectively, indicating the generally low quality of intermediate inputs in 

India. Although it is difficult to directly measure the quality of intermediate inputs in 

India, some examples can be offered here. For example, UNIDO (2010: p.7) cites a 

survey conducted by A.T. Kearny, who found that defect rates in the Indian auto 

component industry are in the range of 1000–2000 parts-per-million (ppm), whereas 

those of Japanese average around 100–200 ppm. World Bank (2004: p.52) also 

mentioned the low quality and quality inconsistency of India’s textile and clothing 

products, which is likely to be a consequence of a fragmented production process spread 

over many small-scale units.  

This study contributes to the literature in two main ways. First, it proposes a 

new mechanism that explains India’s skill-sorting pattern, which is, in turn, likely to 

contribute to India’s service-led growth. Second, this study theoretically and empirically 

presents a new mechanism that explains skill-sorting patterns and skill wage 
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differentials across industries based on the length of an industry’s production chains (or 

the amount of necessary intermediate inputs used to produce an industry’s output). I 

present a simple model to show that when the quality of intermediate inputs deteriorates 

rapidly, exceeding the increasing speed of marginal revenue of skill, workers’ skill is 

negatively associated with the length of an industry’s production chains. In other words, 

higher-skilled individuals choose to work in industries with shorter production chains. 

In this study, I call this skill-sorting pattern negative sorting, and the opposite pattern is 

called positive sorting. Negative (positive) sorting occurs because wage returns to skill 

are higher in industries with shorter (longer) production chains. Using India’s data for 

year 1999, I empirically confirm the existence of negative sorting because of seeking a 

higher return to skill in India. The results remain robust even when correcting for 

possible selection bias, controlling for alternative reasons for inter-industry skill wage 

differentials, and examining the 2009 data alone. 

The rest of the paper is organized as follows. Section 2 overviews related 

studies and the ways in which this study contributes to the literature. Section 3 presents 

a simple simultaneous production model in which skill-sorting patterns depend on the 

length of industry production chains and intermediate input quality. Section 4 explains 

the empirical strategy. Section 5 describes the data sources and the construction of key 

variables. Section 6 presents the main estimation results for India in 1999. Section 7 

provides robustness checks, and Section 8 concludes. 

 

 

2. Related Literature and Contribution of This Study  

First, this study is closely related to studies that examine how high-skilled 

workers are matched with other workers or intermediate inputs (Kremer 1993; Lucas 

1978; Murphy, Shleifer, and Vishny 1991; Rosen 1982; Sampson 2013). All studies are 

theoretical. Thus, I can first contribute to the literature by providing empirical evidence. 
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Moreover, most studies present models in which high-skilled workers are matched with 

larger amounts of labor or intermediate inputs. For instance, most talented persons 

produce products that require more tasks (and thus, require more high-skilled workers) 

or work at later stages of sequential production (Kremer 1993), manage firms with 

larger numbers of employees (Lucas 1978; Murphy, Shleifer, and Vishny 1991; Rosen 

1982), or work with larger amounts of high-quality intermediate inputs (Sampson 2013). 

My study shares common features with Kremer (1993) in terms of introducing quality 

deterioration as the number of inputs increases and with Sampson (2013) in terms of 

examining the matching of workers’ skills with the quantity and quality of intermediate 

inputs. However, my study shows that an opposite matching pattern is possible: 

high-skilled workers can work with a smaller amount of intermediate inputs when the 

quality of intermediate inputs deteriorates substantially along the production chains.  

Second, in terms of results, my study also shares certain features with 

Grossman (2004) and Asuyama and Goto (2015). Grossman (2004) built a two-sector 

model to show that most talented individuals choose the so-called “software” sector, in 

which they can work alone and get paid according to their own productivity. They are 

disinclined to work in a team production sector (“automobile” sector) in which the 

wages of high-skilled workers are dragged down by low-skilled team members because 

of imperfect labor contracts. I differ from Grossman (2004) in terms of introducing 

intermediate inputs, building a different multi-sector model, and providing an empirical 

analysis. Asuyama and Goto (2015) theoretically showed that high-skilled individuals 

choose to work at earlier production stages when the quality of intermediate input 

deteriorates rapidly or improves slowly with each production stage. Based on 

cross-country industry panel data, they also empirically confirmed their model’s 

prediction. However, their model is based on sequential production, while mine 

considers simultaneous production. In addition, their data is less fine compared to mine. 

They use industry-level data, while I examine both industry- and individual-level data. 
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In addition, their classifications of industry and skill are much broader.2 They do not 

provide any analysis on inter-industry skill wage differentials. Focusing on one country 

(i.e., India), I examine skill-sorting patterns and inter-industry skill wage differentials 

more rigorously in this paper.   

Finally, this study is also related to studies based on Roy’s model (Roy, 1951), 

which explains skill wage differentials and skill allocation across sectors. Different 

wage returns to observed or unobserved skills across sectors, such as industries or 

occupations, have been found in several empirical studies (Gibbons, Katz, Lemieux, and 

Parent, 2005; Heckman and Scheinkman, 1987; Keane and Wolpin, 1997; Pavcnik, 

Blom, Goldberg, and Schady, 2004). Pavcnik et al. (2004) speculated that returns to 

skill differ across sectors because (1) labor mobility, (2) the ability to bargain over 

wages, and (3) monitoring costs and the necessity of paying efficiency wages all differ 

between high- and low-skilled workers. Roy’s self-selection framework offers another 

explanation. In this framework, workers are endowed with multiple sector-specific skills 

and can have only one job. In this situation, workers self-select into jobs based on their 

comparative advantage. That is, they choose occupations that offer higher returns to a 

skill with which they are relatively well endowed. Autor and Handel (2013) and 

Yamaguchi (2012) obtained some empirical support for this mechanism. Most Roy-type 

studies state that skills are differently rewarded across sectors because skill 

requirements vary among them. My study offers an alternative mechanism, that is, 

returns to skill can vary among sectors because of differences in production chain 

lengths. 

 

 

3. Model  

2 The number of industries is around 35. In addition, only three skill categories based on 
education level are available. 
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Based on a simultaneous production model, this section analyzes how 

skill-sorting patterns are affected by intermediate input quality and production chain 

length. My model builds upon the O-ring theory by Kremer (1993) in terms of 

introducing quality deterioration with an increase in inputs and upon Sampson (2013) in 

terms of introducing the quantity and quality of intermediate inputs.  

Consider a perfectly competitive economy with multiple industries. The output 

of a certain industry is produced by many identical production units, each of which 

comprises one individual with a skill (or productivity) of ]1,0[∈θ  who is working on 

n units of intermediate inputs. There exists only one type of intermediate input, which is 

the composite of various inputs.3 Each industry is only distinguished by n (amount of 

necessary intermediate inputs), which I call the industry’s length of production chains.  

As with Sampson (2013), because of the zero-profit condition in a perfectly 

competitive market, each worker’s wage equals the profit of his/her production unit, 

which is equal to revenue minus the cost of intermediate inputs. Then, by solving the 

wage maximization problem below, an individual will choose to work in industry n* 

where he/she can receive the highest wage: 

                  nqnVnqQqnW Max
n

−= ),(),(),,( θθ ,                  (3.1) 

where ),,( qnW θ  is the wage of a worker with skill θ  if he/she chooses industry n 

and works on n units of intermediate inputs of quality q. ]1,0(∈q  is the quality of one 

unit of intermediate input, which is assumed to be exogenously determined by various 

factors, including levels of human capital, technology, and infrastructure of the economy. 

),( nqQ  stands for the quality of aggregated intermediate inputs when n intermediate 

inputs with quality q are used to produce output. 0>qQ  is assumed.4 Importantly, and 

3 Here, the proportion of various inputs is assumed to be the same among composite inputs, 
although this is not a realistic assumption. Incorporating heterogeneity of inputs is left for future 
research. 
4 The notation “ xY ” stands for partial derivative of Y with respect to x. 
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similar to the O-ring theory by Kremer (1993), I assume that Q is decreasing in n 

( 0<nQ ) because the possibility of defects increases as more inputs are involved. For 

example, consider the quality of a car. If the failure rate of brakes and engines are 1% 

each, the probability of a car that incorporates both parts failing to work properly 

becomes 1.99% (= [1−0.99*0.99]*100). In terms of defect rate, the car’s overall quality 

(final output quality) becomes worse than the quality of each part. Even if the quality of 

each input is perfect (q = 1), a negative nQ  can still occur if the assembly process 

itself entails quality deterioration that becomes more severe with an increase in inputs. 

Similarly to Kremer (1993), output price and quantity are combined in one function, 

),( nV θ , which is the value of output achieved if intermediate input quality exerts no 

influence. I assume 0>θV , 0>nV  and that both Q and V are twice-continuously 

differentiable. QV is the total revenue of the production unit. The price of one unit of 

intermediate input with perfect quality (that is, q = 1) is standardized to one. Thus, the 

cost of intermediate inputs is expressed by nq. Finally, I assume 0<nnQ  and 

0<nnV .5  

The first-order condition for the worker’s maximization problem becomes  

                     0=−+= qQVVQW nnn .                        (3.2) 

Then, by the implicit function theorem,  

                    
nnnnnn

nn

VQQVVQ
QVVQ

 
d
dn

2
*

++
+

−= θθ

θ
.                   (3.3) 

Because of the assumptions of 0<nnQ , 0<nnV , 0<nQ , and 0>nV , the 

denominator, which is the left-hand side of the second-order condition, is negative. If 

θddn /*  is negative, it implies that if an individual’s skill level is higher, the amount of 

intermediate inputs he/she chooses to work with is lower (i.e., the industry’s length of 

production chains is shorter). Such negative sorting ( 0/* <θddn ) occurs only when 

5 These two assumptions are not necessary but are sufficient conditions for the second-order 
condition to be satisfied. 
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0<+ θθ nn QVVQ , or equivalently 

                            
Q
Q

  
V
V nn −<
θ

θ .     (3.4: negative sorting condition) 

By assumption, 0<nQ , 0>θV , and Q > 0. The sign of nVθ can be either positive 

(when V is supermodular in workers’ skill and amount of intermediate inputs) or 

negative (when V is submodular). When V is supermodular ( 0>nVθ ), this condition 

shows that when the speed of quality deterioration along the production chains exceeds 

the increasing speed of marginal revenue of workers’ skill ( θV ), negative sorting occurs. 

On the other hand, if the magnitude of quality deterioration is not sufficiently large, 

positive sorting occurs. When V is submodular ( 0<nVθ ), equation (3.4) always holds 

regardless of the degree of quality deterioration. Even when no quality deterioration 

occurs ( 0=nQ ), negative sorting can occur if V is submodular because the marginal 

revenue of a worker’s skill falls as the production chain lengthens. Finally, it should be 

noted that regardless of the sign on nVθ , high-skilled individuals choose smaller-n 

industries because these industries offer the highest wages. For low-skilled individuals, 

however, a larger-n industry offers higher rewards. In this sense, returns to skill (or skill 

wage premiums) are larger in industries with shorter production chains, when negative 

sorting occurs under condition (3.4).  

 

 

4. Empirical Strategy 

This section tests (1) whether negative sorting occurs in India and (2) whether 

the returns to skill are larger in industries with shorter production chains. The model in 

the previous section indicates that when sorting depends on input quality (that is, when 

V is supermodular), negative sorting is more likely to be observed in developing 

countries such as India, where it can be expected that the input quality will fall rapidly 
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as a result of many unskilled workers, low technology, and poor infrastructure.6 In 

addition, as the skill distribution throughout the economy becomes more unequal, this 

skill-sorting trend emerges more sharply. In this sense, India is one of the most 

appropriate fields to examine skill-sorting patterns given its relatively large number of 

highly educated population as well as its large pool of unskilled workers. In 2009−2010, 

the proportion of workers who had received no schooling or failed to complete primary 

education was 41% (as mentioned above), compared to the 15% who had completed 

secondary education (computed based on NSSO (2009–2010)).  

If V is submodular, negative sorting occurs regardless of the input quality in the 

economy. However, this submodular-V case can be excluded using the evidence from 

Asuyama and Goto (2015), which shares a similar hypothesis to that of this paper. 

Based on cross-country industry panel data, they empirically show that the economy’s 

skill-sorting pattern depends on the input quality in the economy. Their results show that 

negative sorting occurs only in economies in which the rate of change in intermediate 

input quality along production chains is small (either quality deteriorates rapidly or 

improves slowly). Regardless of specifications, their results imply that negative sorting 

occurs in India, where input quality degrades rapidly (or improves slowly). However, 

the data from Asuyama and Goto (2015) is less fine compared to the data in the current 

paper (see Section 2). Thus, I examine India’s skill-sorting pattern more rigorously in 

this paper. I also examine whether skill sorting is affected not only by production chain 

length but also by other supplemental quality indicators of intermediate inputs in order 

to test whether India’s skill-sorting pattern depends on input quality.  

 

6 As explained in the car example in Section 3, it is natural to expect that low quality of an 
intermediate input (low q) leads to a large negative value of nQ  and that low q is caused by 
unskilled labor, low technology, and poor infrastructure, such as unstable electricity supply and 
bumpy roads. 
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4.1 Skill-Sorting Regression 

To test whether negative sorting is observed in India, the following three 

equations are estimated using weighed least squares (WLS). The weight used is the 

survey weight of the dataset (equation (4.1)), the employment size of each industry 

(equation (4.2)), and the employment share of each industry averaged over the two 

periods (equation (4.3)), respectively:  

      ijtijttijttijtttijt sfamilyChainLXSkillChainL 11111 _ εδγβa ++++= ,    (4.1) 

 jtjttjttjtttjt ZChainQChainLSkill 22222 εδγβa ++++= ,      (4.2) 

jtjtjtjtjtjt FFZChainQChainLSkill 33333 εδγβa ++++++= ,  (4.3) 

where subscripts i, j, and t denote worker, industry, and time period (mainly 1999 and 

2009 as a robustness check), respectively. In every equation, ε  stands for the error 

term. In equation (4.1), ijtChainL  measures the length of domestic production chains 

of industry j with which individual i is affiliated. ijtSkill  stands for i’s skill level. 

itX denotes a vector of individual characteristics, which includes estimated years of 

work experience and its square, dummies for being a Muslim, social groups, household 

head, marriage status, residence in rural area, and Indian states in which an individual 

lives.7 ijtsfamilyChainL _  is the average ijtChainL  of other family members of the 

same gender. This is included because in India, an individual’s job choice is assumed to 

be substantially affected by the jobs of same-gender family members.8 Equation (4.1) is 

estimated separately for each period and at the individual level. If 01 <tβ  is observed, 

it indicates negative sorting; that is, high-skilled individuals choose industries with 

shorter production chains.  

Because industry characteristics other than the length of production chains 

7 When the elements constructing my skill index (see Section 5.2.1) include work experience (i.e., 
in cases of SK2 and SK3), experience and its square are not controlled for. Such a treatment also 
applies when testing inter-industry skill wage premium later. 
8 I also experiment with controlling for the average ChainL of other same-gender workers in the 
same district in addition to ChainL_sfamily, but the main results do not change.  
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cannot be controlled for in equation (4.1), equation (4.2) is also estimated separately for 

each period but at the industry level.9 jtSkill  and jtChainL  stand for the average skill 

level of workers and the length of domestic production chains for industry j at time t, 

respectively. If negative sorting occurs, workers’ skill level should be higher in 

industries with shorter production chains. In this case, t2β  should be negative. 

jtChainQ represents a vector of supplemental quality indicators of intermediate 

inputs that are not captured by jtChainL . It includes an industry’s dependence on 

imported inputs ( jtportImChainQ _ ) and the skill level embodied in inputs from other 

industries ( jtSkillChainQ _ ). jtChainQ  is controlled for because in reality, the input 

composition differs across industries. Consequently, the size of quality deterioration is 

determined by not only production chain length but also input composition and quality. 

It is expected that the quality of imported inputs is higher than that of domestic inputs. 

In addition, input quality can be measured by the skill level of workers who produce 

said inputs. A statistically significant value for t2γ  implies that a skill-sorting pattern 

depends on input quality (supermodular-V case). A positive value for t2γ  is expected 

because when comparing industries with the same jtChainL , input quality deterioration 

can be expected to be smaller in a higher- jtChainQ  industry, which consequently 

attracts more skilled workers. 

jtZ  denotes a vector of industry characteristics. It includes degrees of imports 

and exports of final goods. It also includes employment ratios of small firms, which 

approximate an industry’s degree of informality.  

Finally, industry-level skill-sorting equation (4.3) is estimated by pooling 

two-year samples and adding time and industry fixed effects ( tF  and jF , respectively). 

jF  controls for all time-invariant industry characteristics, some of which are not 

9 Here, I do not aim to identify causality but try to confirm the association between worker’s skill 
level and production chain length. Thus, either Skill or ChainL can become the dependent or 
independent variable.  
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controlled for in equation (4.2). Again, a negative 3β  and positive 3γ  can be 

expected. 

 

4.2 Skill Wage Premium Regression 

To test whether the return to skill is larger in industries with shorter production 

chains, the following augmented Mincer-type wage equation (Mincer, 1974) is 

estimated by WLS with the survey weight: 

ijtijttijtijttijtijtttijt ZSkillChainQSkillChainLSkillWage ***ln 4444 δγβa +++=                                                          

ijtjijttijtt FXSkill 444 εlη ++++ ,     (4.4) 

where ijtWageln denotes the logarithm of a worker’s wages in industry j at time t. If 

t4β , the coefficient of the interaction term between ijtSkill and ijtChainL  is negative, 

it indicates that returns to skill are higher in industries with shorter production chains. 

As in the skill-sorting regressions, supplemental quality indicators of the chain 

( ijtChainQ ) are also controlled for. A positive t4γ  is expected because it is expected that 

input quality deteriorates with a decrease in ijtChainQ . Similar to the effect of 

ijtChainL , this effect of quality deterioration can lead to a lower return to skill. 

 To control for other reasons causing inter-industry skill wage differentials, a 

vector ijtZ is also interacted with ijtSkill . It contains individual characteristics, such as 

union affiliation, employment nature (permanent or temporary), and affiliation with 

public and small firms. These factors are included because it can be expected that a skill 

wage premium applying to union members or public-sector workers would be smaller 

because the effect of market forces on the wage-setting mechanism might be weaker in 

these sectors. Based on empirical evidence from India (Azam, 2012; Dutta, 2006), it can 

also be expected that the skill wage premium is lower in informal sectors characterized 

by temporary employment or small firm size.  

itX  is a vector of individual characteristics such as those included in equation 

(4.1) as well as occupation, union affiliation, employment nature, social security status, 
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and affiliation with a public and small firm.10 Controlling for these variables is 

particularly important in India, where a large informal sector exists. Industry affiliation 

dummies ( jF ) are also included. jF  absorbs the industry-wage premium that is 

common for all workers regardless of their skill level. Finally, ijt4ε  denotes the error 

term.  

 The above identification strategy is possible because individuals with the same 

skill level choose different industries and receive different wages in India’s dataset. This 

fact can be explained by the model developed by Dahl (2002), in which individuals 

maximize their utility, which is a function of earnings and tastes.11 Thus, in reality, 

wages and individuals’ preferences regarding job characteristics affect their industry 

choice. As a result, perfect negative sorting is not observed, and inter-industry (or more 

precisely, inter-ChainL) skill wage differentials can be identified.  

 

 

5. Data 

5.1 Main Data Sources and Sample Used 

Data on individual-level variables, including wages, skill level, and other 

characteristics, as well as several industry-level variables, such as workers’ skill level of 

industry, are primarily constructed from the unit-level data of the Employment and 

Unemployment schedules of the National Sample Survey (NSS). As Kijima (2006) 

states, the Employment and Unemployment schedule of the NSS is the only survey that 

collects information on individual’s earnings, employment status, and other 

characteristics for all of India through a stratified random sampling procedure.  

10  Similar to the treatment in footnote 7, if the skill index is constructed from education, 
experience, and occupational information (i.e., in case of SK3), experience and occupations are 
not controlled for when estimating equation (4.4).  
11 Dahl (2002) theoretically and empirically examined individuals’ patterns of self-selection and 
the difference in return to education across U.S. states.  
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Industry-level data, including the length of production chains, dependence on 

imported inputs, and import or export ratio, are constructed from the input-output (IO) 

tables for India.  

I primarily examine the matched data on the 55th round of NSS data conducted 

in 1999–2000 and the 1998–1999 IO table (NSSO, 1999-2000; CSO, 1998-99). I call 

this period 1999. Year 2009 data, which is the matched data on the 2009–2010 (66th 

round) NSS and the 2007–2008 IO table (NSSO, 2009-2010; CSO, 2007-08), is also 

examined in the robustness analysis and used in the industry-panel skill-sorting 

regression (equation (4.3)). There are several reasons for primarily analyzing the 1999 

data. First, the NSS sample size is much larger in this period, and consequently, the 

most finely grained industry classifications can be achieved.12 Second, before this round, 

the NSS did not collect some important information, such as firm size and social 

security status. Third, after this round, it is not possible to construct accurate skill 

indices that incorporate occupational information because NSS occupational 

classifications become much broader. Finally, both ChainL and ChainQ become less 

accurate in subsequent years.13 

There are 115 sectors in the 1998–1999 IO table. I match these sectors with the 

NSS’s five-digit industry codes as closely as possible based on the descriptions of both 

sectors and industries. I also ensure that there is a sufficient number of observations 

(around 100 sample workers) with non-missing wage information for each industry 

because the within-industry wage gaps between skill groups is estimated in equation 

(4.4). As a result, 57 industries are created.14 The concordance table on industry 

12 The numbers of households and individuals covered by the NSS are 115,409 and 564,740 
(1993–1994), 165,244 and 819,013 (1999–2000), 124,680 and 602,833 (2004–2005), and 
100,957 and 459,784 (2009–2010), respectively. 
13 This is because the construction of these two indices involves estimation based on the 1993–
1994 IO table, for which the industry classification is the same as the 1998–1999 IO table but 
different from the 2007–2008 IO table (see Sections 5.2.2 and 5.2.3).  
14 When year 2009 data is examined as a robustness check in Section 7.3, 54 industries are 
created as a result of the same procedure. For the details of these 54 industry classifications, see 
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classification between IO tables and the NSS is provided in Appendix Table B.3(a). 

I restrict the estimation sample to male, prime-age (15–65 years old), regular 

wage/salaried (RWS) employees who have worked full time and are not currently 

attending an educational institution. Following Kijima (2006), full-time workers are 

defined as those who have worked at least five days at their main economic activity 

during the reference week.15 Because the actual hours worked are not asked in the NSS, 

wages are defined as the weekly wage and salary earnings (either in cash or in kind, 

including bonus and perquisites) for the main economic activity.  

 

5.2 Construction of Key Variables 

This subsection describes how I construct key variables, namely ijtSkill , 

jtChainL , and jtChainQ . A brief description of other variables and the summary 

statistics are presented in Appendix A.  

 

5.2.1 Skill: Workers’ Skill  

Workers’ skill ( ijtSkill ) is measured by the following three (or four) indices:  

 Skill index 1 (SK1), which equals estimated years of education: Measuring 

individuals’ skills by their levels of educational attainment is the most conventional 

method used in the labor and macroeconomics literature (Ingram and Neumann, 

2006: p.37). Seven educational levels (illiterate; literate without formal schooling or 

Appendix Table B.3(b).  
15 Wages, RWS working status, number of days worked, and industry and occupation affiliations 
are based on the status during the reference week. However, other individual characteristics, such 
as union affiliation, employment nature, social security status, and affiliation with a public firm 
and small firm, are only available for so-called “usual status,” which is based on a reference 
period of one year. Thus, when controlling for these characteristics, I restrict the sample to 
individuals whose RWS working status, five-digit industry code, and three-digit occupation code 
are the same between weekly and usual (yearly) statuses. I also restrict this sample by only 
focusing on individuals who explicitly claim that they had no months without work during the 
reference year. Under this restriction, I assume that individuals’ jobs based on weekly and yearly 
status are the same. 
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literate but have not completed primary education; primary; middle; secondary; 

higher secondary; graduate and above) can be identified in NSS 1999–2000. The 

years of education are estimated from these seven categories by allocating the 

corresponding number of years of schooling to each level respectively (0, 2.5, 5, 8, 

10, 12, and 15 years).  

 Skill index 2 (SK2), which is constructed from education and experience: An 

alternative skill index is constructed following Gibbons et al. (2005: p.698). First, a 

logarithm of wages is regressed on education category dummies, itX , in equation 

(4.1) (or equation (4.4), depending on the specification of the regressions 

considered) and industry affiliation dummies. 16 Then, skill index 2 (SK2) is 

estimated by predicting the wage of each worker based solely on the worker’s 

education and experience. Because the numbers of years of work experience are not 

available in NSS data, they are estimated by subtracting [estimated years of 

education plus 5] from age, following Kijima (2006). Finally, this skill index is 

normalized to have a zero mean.  

 Skill index 3 (SK3(1) and SK3(2)), which is constructed from education, 

experience, and task content of occupation: Skill index 3 (SK3) is computed 

similarly as the predicted wage based on education, experience, and task content 

measure of occupations.17 Autor and Handel (2013) showed that workers self-select 

into occupations that offer high returns to tasks in which they are relatively well 

endowed. Thus, I assume that occupation task content can be used as a proxy for a 

16 When examining SK2 in skill-sorting regression, itX of equation (4.1) is used. In case of a 

skill wage premium regression, itX of equation (4.1) is used when occupations, union affiliation, 
employment nature, social security status, and affiliation with a public and/or small firm are not 
controlled for in the regression. When these variables are controlled for in the skill wage premium 
regression, itX of equation (4.4) is used. 
17 Before prediction, the logarithm of wages is regressed on education category dummies, task 
content measures of occupations, itX in equation (4.1) (or equation (4.4) ) without occupation 
dummies, and industry affiliation dummies.  
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worker’s skill in conducting these tasks. I experiment with two task content 

measures of occupation. The first measurement used to construct SK3(1) is 

cognitive and motor task complexity of occupations, which was extracted from 

Yamaguchi (2012). The second measurement used for SK3(2) is routine, abstract, 

and manual task intensity of occupations, which was extracted from Autor and 

Dorn (2013) and Dorn (2009). Because both measurements are constructed based 

on the task content of occupations in the United States (U.S.) around 1991 or 1977, 

they might be crude measures for the task content of India’s occupations. However, 

as long as some commonality can be expected between occupation-specific skill 

requirements in the U.S. and India, SK3 can serve as an appropriate proxy for 

ijtSkill . Based on occupation content, I match occupation codes between India and 

the U.S. as closely as possible (Appendix Table B.4(b)). Then, occupation-specific 

task content measures for the U.S. are assigned to each occupation in India. 

Because the occupation codes in the 2009–2010 NSS are much broader than those 

in the 1999–2000 NSS, SK3 is constructed only for 1999.  

 

5.2.2 ChainL: Length of Production Chains 

The length of production chains of industry j ( jtChainL ) is computed in a 

manner similar to that used in Asuyama (2012). In general, jtChainL  is the column 

sum of the Leontief inverse coefficient of industry j computed from the aggregated 

57×57 sector IO table as follows:  

∑= k kjtjt leonChainL ,  (5.1) 

where kjtleon  is the (k, j)th entry of the Leontief inverse coefficient matrix, L.18 

jtChainL  measures the amount of domestic intermediate inputs that industry j requires, 

18 1)( −−= dAIL , where I is the identity matrix and dA  is the input coefficient matrix for 
domestic input whose (k, j)th entry is kja , which measures the amount of domestic input from 
industry k directly used to produce one dollar’s worth of industry j’s output. 
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both directly and indirectly, to produce one dollar’s worth of that industry’s output. It 

stands for the scope of production linkages with domestic intermediate input industries. 

Imported inputs are excluded from the calculation of jtChainL  because imported 

inputs are likely to be of higher quality than domestic inputs. 

 To calculate jtChainL  for domestic inputs by equation (5.1), the total 

intermediate inputs need to be separated into domestic and imported categories and an 

IO table needs to be created on the basis of domestic input only. This is possible for the 

IO table from 1993–1994, when an import flow matrix is available. However, import 

flow matrices are not available for the 1998–1999 and 2007–2008 IO tables. Thus, 

jtChainL  for the 1998–1999 IO table is estimated as  

],//[]/[*

]/[*

,95,,95,,98,,98,

93,93,98,98,

WIODtjWIODtjWIODtjWIODtj

tjtjtjtj

ChainLTChainLChainLTChainL  

ChainLTChainLChainLTChainL

====

==== =
(5.2) 

or this can alternatively be written as 

,]/[*

]/[*

period two the between  ChainLTChainL of change                         

1993 in  ChainLTChainL 1998 in ChainLT1998 in ChainL

jtjt

jtjtjtjt =
  

where jtChainLT  stands for the length of the production chains computed based on 

total (domestic plus imported) inputs. The subscripts t = 93, 95, and 98 in equation (5.2) 

denote the corresponding year (1993–1994, 1995, and 1998(–99)) of the IO tables. The 

subscript “WIOD” means that the corresponding IO table is extracted from the World 

Input-Output Database (WIOD) (Timmer et al., 2015). Although its industry 

classification is much broader, the WIOD provides IO tables that separate domestic and 

imported inputs.19 Because the WIOD’s earliest year is 1995, I approximate the change 

of [ jtjt ChainLTChainL / ] between 1993 and 1998 based on that between 1995 and 1998, 

19 In particular, I extract India’s National Input-Output Tables, which were released in September 
2012 by WIOD. WIOD adopts a 35-industry classification. Thus, as Appendix Table B.3(a) 
shows, [ jtjt ChainLTChainL / ] of one WIOD industry is often applied to several industries based 
on my 57-industry classification. 

 20 

                                                 



 
 

assuming that the industrial structure does not change substantially within these few 

years. jtChainL  for the 2007–2008 IO table is computed in a similar manner by 

replacing the subscript “98” of equation (5.2) with “2007.” 

 

5.2.3 ChainQ: Supplemental Quality Indicators of Intermediate Inputs 

First, an industry’s dependence on imported inputs, jtportmIChainQ _ , is 

computed for the years 1993–1994 as follows20: 

MLportmIChainQ jt =_ ,   (5.3) 

where M is the 1×57 vectors whose jth entry is j’s imported input ratio to output. L is 

the 57×57 Leontief inverse coefficient matrix computed from the 1993–1994 IO table 

for domestic inputs. Similar to the estimation method used to calculate jtChainL , the 

jtportmIChainQ _ for the 1998–1999 IO table is estimated as 

98,_ =tjportmIChainQ  

]_/_[*_ ,95,,98,93, WIODtjWIODtjtj portmIChainQportmIChainQportmIChainQ ==== . (5.4)   

jtportmIChainQ _ for the 2007–2008 IO table is also computed in a similar manner.  

Another quality indicator is jtSkillChainQ _ , the skill level of workers 

embodied in inputs from other industries. It is computed as follows: 

∑∑ ≠≠
=

jk kjtkjtjk kjtjt leontleontEduySkillChainQ /)*(_ ,   (5.5) 

where kjtEduy  is the average years of education of all workers in industry k whose 

output is used as an input in industry j. Thus, jtSkillChainQ _  is the average number 

of years of education embodied in inputs from other industries, weighted by k (input 

industry)’s share in the entire production chain lengths. kjtleont  is the (k, j)th entry of 

the Leontief inverse coefficient matrix computed based on total inputs. Ideally, it should 

be computed based only on domestic inputs, but it was not available for the 1998–1999 

and 2007–2008 IO tables. Thus, kjtleont  is computed based on total inputs as the next 

20 I thank Satoshi Inomata for his advice on the construction of ChainQ_Import. 
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best method. 

 

 

6. Estimation Results for 1999 

6.1 Skill-Sorting Regression 

Figure 2 (individual level) and Figure 3 (industry level) present the raw 

correlations between workers’ skills expressed by the four skill indices and the 

industry’s production chain lengths in 1999. These two figures generally show that 

high-skilled individuals work in industries with shorter production chains; that is, 

negative sorting seems to occur in India. It is also evident from Figure 3 that production 

chains tend to be shorter in service and primary industries than in manufacturing 

industries.21 

 The question of whether this simple correlation remains robust even when 

controlling for other factors is examined by estimating equations (4.1)–(4.3). First, 

Table 1 reports the estimation results for equation (4.1), that is, the individual-level skill 

sorting equation in 1999. Consistent with this paper’s negative-sorting hypothesis, the 

coefficient on skill index is significantly negative in almost all specifications regardless 

of skill indices, industry coverage, and control variables. I examine the manufacturing 

and service industry samples, which exclude primary industries such as agriculture and 

mining, because final product quality in primary industries is substantially affected by 

land, weather, and natural resources, which IO tables do not include as inputs. I also 

examine skill sorting within the manufacturing sector to exclude the possibility that 

differences in ChainL do not represent variations in production chain length but rather 

only capture differences between service and manufacturing sectors. However, it should 

be noted that the sample size becomes much smaller when restricting the sample to 

21 Exact ChainL figures (and Skill, ChainQ_Import, and ChainQ_Skill) for each industry are 
provided in Appendix Table B.1.  
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manufacturing. A smaller sample size results in larger standard errors in the estimated 

coefficients. 

Table 2 and Table 3 report the estimation results for the industry-level skill 

sorting equation for 1999 (equation (4.2)) and for the 1999–2009 panel (equation (4.3)), 

respectively. In 1999, except the manufacturing-industry sample, negative sorting can 

generally be observed regardless of skill indices. The negative-sorting trend is much 

less clear in the manufacturing sample (Table 2). However, when controlling for 

time-invariant industry characteristics using 1999–2009 panel data, negative sorting 

becomes more evident regardless of variations in industry coverage (Table 3). Moreover, 

a significant and unexpectedly negative sign of ChainQ_Import in column (6) of Table 2 

now becomes insignificant.  

ChainQ_Skill is insignificant or positively associated with an industry’s worker 

skill level (Skill) in the 1999 manufacturing sample. However, contrary to expectation, 

the sign on the coefficient of ChainQ_Skill in the manufacturing sample turns out to be 

negative in the panel regression (Table 3). This is because between 1999 and 2009, 

industries with higher growth in ChainQ_Skill experienced lower growth in Skill. One 

possible reason for this negative coefficient of ChainQ_Skill is that ChainQ_Skill of 

industry j does not capture the quality (embodied skill level) of inputs sourced from 

within its own industry (i.e., industry j). From the perspective of each worker in 

industry j, the quality of inputs sourced from within industry j also matters because it 

affects his or her wages. Thus, I construct 

∑∑=
k kjtkjtk kjtjt leontleontEduySkilltotalChainQ /)*(_ , where subscript k includes j. 

When controlling for this ChainQ_Skilltotal instead of ChainQ_Skill, the coefficients on 

ChainQ_Skilltotal become positive in the panel for skill-sorting regression (Appendix 

Table B. 2). However, because the share of inputs sourced from within its own industry 
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out of the total inputs is large in general, 22  it is natural to expect that 

jtlSkillltotaChainQ _  is positively associated with jtSkill , which is the average skill 

level of workers in that same industry. Constructing a more sophisticated index to 

measure the input quality that is not captured by ChainL is left for future research. 

 

6.2 Skill Wage Premium Regression 

Table 4 reports the estimation results for the skill wage premium regression 

(equation (4.4)), which includes only one interaction term with Skill, that is, 

Skill*ChainL. A negative coefficient on this Skill*ChainL is consistent with my 

hypothesis that negative sorting occurs in India because the returns to skill are higher in 

industries with shorter production chains.  

The first column of every sample includes various individual characteristics 

based on weekly status. The second column controls for industry wage premium by 

adding industry dummies. The third column also controls for various job characteristics 

based on yearly status.  

The coefficients on Skill*ChainL are negative in some specifications but are 

not so robust. The signs on coefficients for other control variables are almost consistent 

with the literature and general expectations. Variables positively associated with wages 

in general are skill index, experience, being household head, being married, having an 

occupation other than farmer, working at a public enterprise, and being covered under 

the Provident Fund (India’s social security fund). In contrast, experience squared, being 

a Muslim, belonging to a disadvantaged social group, being a farmer, working in a 

temporary job, working in a small firm, and living in a rural area tend to be negatively 

associated with wages.  

22 For instance, the length of production chains taken up by the same industry ( jjtleont ) 

accounts for 55% of the total production chain length ( jtChainLT ) on average across 57 
industries in 1999. 
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Next, other factors that may explain inter-industry skill wage differentials are 

also controlled for by adding interaction terms between these factors and Skill. Table 5 

reports the estimation results for all the interaction terms with Skill. Importantly, the 

coefficients on Skill*ChainL become negative in most specifications; that is, returns to 

skill are higher in industries with shorter production chains. Consistent with the study’s 

hypothesis, returns to skill tend to increase when supplemental production chain quality 

indicators (ChainQ_Import: dependence on imported inputs; ChainQ_Skil: average skill 

level embodied in the inputs from other industries) are higher. This implies that input 

quality affects inter-industry skill wage differentials. As expected, the skill wage 

premium tends to be smaller in the public sector and in the informal sector, which is 

characterized by temporary employment and small-sized firms.  

 

 

7. Robustness Checks 

This section provides various robustness checks, particularly for skill wage 

premium regression, by (1) correcting for possible selection bias, (2) controlling for 

alternative reasons for inter-industry skill wage differentials, and (3) examining a 

different period (year 2009).  

 

7.1 Selection problems 

Three types of selection problems are involved in the previous skill wage 

premium estimation, which was based on the sample of RWS employees. The first is the 

selection into either working or non-working. The second is the selection into working 

as an RWS employee or a self-employed/casual worker. The third is the selection into 

each industry. The first and second selection problems are less critical because this 

paper’s focus is inter-industry variations in workers’ skill levels and the skill wage 

premium. Thus, the estimation results are not biased as long as the study’s population of 
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interest is considered to be RWS employees. Using an RWS-employee sample is most 

appropriate to examine the skill-sorting pattern of highly skilled workers in particular 

(as illustrated by the job selection example offered in the Introduction about the 

most-promising IIT graduates) because most high-skilled individuals choose to work as 

RWS employees. In the 1999–2000 NSS, the ratios of RWS employees, self-employed, 

and casual workers among working individuals who had completed college/university 

education or more are 59.1%, 38.1%, and 1.8%, respectively. Being self-employed is 

also popular. However, the NSS does not provide wage data for self-employed persons. 

It is also much harder to control for the diversified job characteristics of self-employed 

workers.  

Self-selection into industry is more critical. Individuals’ wages are not 

observed for all industries; they are only observed for the single industry an individual 

chooses. In other words, the group of observed individuals working in a certain industry 

is not a random sample of the population. This can lead to a biased estimate for t4β  in 

equation (4.4), which is the inter-industry skill wage differentials caused by varied 

production chain lengths. Because t4β  is the focus, this possible selection bias needs 

to be tackled. 

To correct for the selection bias, I utilize the control function approach of 

Wooldridge (2015: pp. 430-432), who extended the method of Garen (1984).23 As 

mentioned above, the choice of ijChainL  is not randomly assigned to the population. 

Thus, the observed coefficient of ijij ChainLSkill *  can be expressed as 

individual-specific inter-industry (or more precisely, inter- ijChainL ) skill wage 

differentials, ii vg += 4β , where 4β  is the population-average inter- ijChainL  skill 

wage differentials needed to be identified and 0)( =ivE . Then, the most basic version 

23 I thank Jeffrey M. Wooldridge for providing me with the Stata code for the Table 1 in 
Wooldridge (2015). 
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of equation (4.4) can be re-written as24 

ijijijijijijiij XChainLSkillChainLSkillgWage 44444 *ln εljηa +++++= ,  (7.1) 

where ijX  is the same vector as in equation (4.1), which includes the estimated years 

of work experience and its square as well as dummies for being Muslim, social groups, 

household head, marriage status, residence in rural area, and Indian states of 

residence.25 

By substituting ii vg += 4β  into equation (7.1), the following is obtained 

ijijijijijij XChainLSkillChainLSkillWage 44444 *ln ljηβa ++++=   

ijijiji ChainLSkillv 4** ε++ . (7.2)                                                   

I assume that only ijWageln and ijChainL are endogenous and that ijChainL can be 

expressed by equation (4.1): 

ijijijijij sfamilyChainLXSkillChainL 11111 _ εδγβa ++++= ,   (4.1) 

where 0)_,,,1|( 1 =ijijijij sfamilyChainLXSkillE ε . ijsfamilyChainL _  (average 

ijChainL  of other family members of the same gender) should be strongly correlated 

with ijChainL  and uncorrelated with ij4ε . I assume that iv  and ij4ε are linearly 

related to ij1ε , that is, ijijivE 111 )|( επε = and ijijijE 1214 )|( επεε = . I also assume that 

iv  and ij4ε are independent of ( ijijij sfamilyChainLXSkill _,,,1 ). Then, the equation to 

estimate the skill wage premium becomes 

),_,,,1|(ln ijijijijij ChainLsfamilyChainLXSkillWageE  

ijijijijij XChainLSkillChainLSkill 44444 * ljηβa ++++=  

ijijijij ChainLSkill 1211 ** επεπ ++ .                     (7.3) 

Thus, 4β  can be identified by regressing ijWageln on 1, ijij ChainLSkill * , ijSkill , 

ijChainL , ijX , ijijij ChainLSkill **1ε
 , and ij1ε

 , where ij1ε
  is the residual from the 

regression of equation (4.1).  

24 Subscript t is omitted. In order to take the control function approach, ijChainL is controlled for 
instead of industry dummies. 
25 Experience and its square are only included when SK1 is used as a skill index. 
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The estimation result of equation (4.1) is presented in the third column of every 

sample in Table 1. The results of the F-test on the null hypothesis 01 =δ  shows that 

ijsfamilyChainL _  is strongly associated with ijChainL . Estimation results for 

equation (7.3) are reported in Table 6. First, the results of the F-test for the joint 

significance of ( ijijij ChainLSkill **1ε
 , ij1ε

 ) show that selection bias exists only when 

using SK1 as a skill index. In cases with other skill indices, it is not necessary to correct 

for selection bias. Second, even in case of SK1, the selection-corrected coefficient of 

ijij ChainLSkill *  is still significantly negative. Thus, the results obtained in Section 6 

are robust even when self-selection into industry is considered. 

 

7.2 Alternative Reasons for Inter-industry Skill Wage Differentials 

As mentioned in Section 2, returns to skill can vary across industries not only 

because different production chain lengths among industries but also because (1) labor 

mobility, (2) ability to bargain over wages, and (3) monitoring costs and necessity to 

pay efficiency wages vary between high-skilled and low-skilled workers across 

industries (Pavcnik et al., 2004).  

 Differences in labor mobility between skill groups (Mob): In a standard 

competitive labor-market model with perfect mobility, returns to skill are equalized 

over different industries. As the labor mobility of a certain skill group becomes 

lower in certain industries, the wages paid to that group in these industries deviate 

from market wages. Consequently, returns to skill vary across industries. Thus, the 

difference in labor mobility between high-skilled and low-skilled workers in each 

industry ( jtMob ) should be controlled for. As a measure for jtMob , I use the 

labor-mobility gap between high-skilled and low-skilled individuals in the 

sample. 26 Labor mobility, which is computed based on NSS data, is measured by 

26 High-skilled workers are defined as those with lower secondary or above education (10 or 
more years of education completed) and low-skilled workers are those with less than a 
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the ratio of individuals who changed industry (in terms of two-digit NIC-1998 

levels) during the two years before the date of the NSS survey.27  

 Difference in bargaining power over wages between skill groups (Power): When 

the ratio of high-skilled workers is higher in industries with shorter production 

chains, bargaining power over wages might be greater for high-skilled workers in 

these industries. If this is the case, the higher skill premium in industries with 

shorter production chains is caused by not only input quality but also the relative 

bargaining power between skill groups. To exclude this possibility, the variable 

jtPower  is constructed using the NSS data as the ratio of the number of union 

members among high-skilled workers to that of low-skilled workers in each 

industry.  

 Difference in monitoring costs (or efficiency wage) between skill groups (EW): 

Monitoring worker performance is easier for routinized tasks. In contrast, 

monitoring is costly for abstract or manual tasks that are harder to quantify. When 

monitoring is costly, firms can pay efficiency wages (which are higher than market 

wages) to prevent shirking (Shapiro and Stiglitz, 1984). If this is the case, in 

industries where the routine task intensity of high-skilled workers is higher than 

that of low-skilled workers, the need to pay efficiency wages to high-skilled 

workers is relatively lower. Consequently, the skill wage premium shrinks. Thus, 

the ratio of average routine task intensity between high-skilled and low-skilled 

workers of each industry ( jtEW ) is controlled for.28  

I control for the alternative reasons of jtMob , jtPower , and jtEW  by 

lower-secondary education when using SK1 as the skill index. When using SK2 or SK3, 
high-skilled (low-skilled) workers are defined as the third and fourth (first and second) quartiles 
of the corresponding skill distribution. This definition of high- and low-skilled workers is also 
used when constructing Power and EW. 
27 There are 60 industry categories based on two-digit NIC-1998 codes. 
28 As explained in the construction of SK3(2), routine task intensity extracted from Autor and 
Dorn (2013) and Dorn (2009) is assigned to each individual based on individual occupation. 
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interacting them with ijtSkill , and adding one of these interaction terms to equation 

(4.4). The estimation results presented in Table 7 imply that labor mobility and 

bargaining power do not generally explain inter-industry skill wage differentials. 

Somewhat unexpectedly, the skill wage premium tends to be higher in industries where 

routine task intensity is relatively higher for high-skilled workers. Importantly, the 

negative sign and statistical significance of the coefficient on ijtijt ChainLSkill *  

remain the same as in the results without controlling for these alternative explanations 

(third column of each sample in Table 5). In sum, this paper’s baseline results remain 

robust. 

 

7.3 Results for year 2009 

As mentioned in Section 5.1, data for the year 1999 are superior to other years’ 

data. However, to exclude the possibility that this study’s results only capture a 

year-specific phenomenon, the year 2009’s data is also examined in this section. As for 

the year-2009-specific analysis, a 54-industry classification is adopted due to the 

smaller sample size of the NSS data. In addition, SK1 measures years of education more 

precisely because more detailed education categories are available in the 2009–2010 

NSS: “higher secondary” in the 1999–2000 NSS is decomposed into “higher secondary” 

(12 years of schooling) and “diploma and certificate courses” (13 years). Similarly, 

“graduate and above” in the 1999–2000 NSS is decomposed into “graduate” (15 years) 

and “postgraduate and above” (17 years). Finally, it should be noted that SK3 is not 

available for 2009 (see Section 5.2.1). 

Table 8 reports the results of the individual-level skill-sorting regression in 

2009. Similarly to the year 1999, negative sorting is observed in all-industry or 

manufacturing and service industry samples. In contrast, the trend of negative sorting is 

not clear when restricting the sample to manufacturing. Next, Table 9 shows the results 

of industry-level skill-sorting regressions in 2009. Again, negative sorting occurs in 
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all-industry or manufacturing and service industry samples but not in the manufacturing 

sample.  

Estimation results for the skill wage premium regression in 2009 are reported 

in Table 10. Overall, a similar trend as that seen in 1999 (Tables 4, 5) can be observed. 

Namely, returns to skill are higher in industries with shorter production chains. However, 

compared with 1999, the results are less robust when interaction terms between Skill 

and various control variables are included (columns (4)–(6)). In these cases, negative 

sorting is only clearly observed when using SK2. Higher values for ChainQ_Import and 

ChainQ_Skill tend to increase the skill wage premium, but the results are not so robust. 

In sum, the results are less robust in 2009. However, trends consistent with this 

study’s prediction are still observed. This might be because industrial structure does not 

change substantially between 1999 and 2009. An industry’s production chain length, 

average worker skill level, dependence on imported inputs, and skill level embodied in 

inputs from other industries are highly correlated between the two periods.29 The 

slightly less-robust results may partly reflect the less-precise measure for ChainL and 

ChainQ, as mentioned in Section 5.1. 

 

 

8. Conclusion 

In this paper, I have proposed a new mechanism to explain skill-sorting 

patterns and skill wage differentials across industries according to the length of 

industries’ production chains. Using a simple model, I have shown that when the quality 

of intermediate inputs deteriorates rapidly along the production chains, high-skilled 

workers self-select into industries with shorter production chains (“negative sorting”) 

29  When regressing the 2009 figure for each industry (ChainL, Skill, ChainQ_Import, or 
ChainQ_Skill) on the 1999 figure (and 1), the estimated coefficients range from 0.78 to 1.60. The 
corresponding R-squared ranges from 0.76 to 0.93. 
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because of higher returns to skill. I empirically confirm that such negative sorting 

because of seeking higher returns to skill is observed in India, where quality 

deterioration of inputs is likely to be substantial.  

Although the results are less robust, intermediate input quality that is not 

captured by production chain length also affects skill-sorting patterns and inter-industry 

skill wage differentials. After controlling for the effect of production chain length, it was 

found that returns to skill tend to be higher in industries with higher dependence on 

imported inputs and higher skill levels embodied in inputs from other industries. The 

effects of these two quality indicators on skill-sorting patterns are less clear. As 

mentioned in Section 6.1, measuring input quality more directly and precisely is 

essential for further analysis, but this is left for future research. 

 The results of this study have important implications for understanding 

countries’ development patterns. As suggested by Grossman (2004) and Asuyama 

(2012), when the trend for negative sorting is strong, a country is likely to have a 

comparative advantage in industries with shorter production chains (e.g. many service 

industries). Negative sorting in India and its service-led growth is the most prominent 

example. Thus, if the governments of developing countries want to foster manufacturing 

industries, most of which are characterized by long production chains and high levels of 

job creation, upgrading the country’s input quality by reforming education, technology, 

and infrastructure policies to mitigate negative sorting or induce positive sorting will be 

critical. 
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Figure 1. Educational Attainment of Indian Male Regular Wage/Salaried Workers by Industry in 2009 
(Sorted from Left to Right by Industry Workforce’s Average Years of Education) 

Notes: The bar graph represents the percentage of workers completing the corresponding educational level. Workers include male, prime-age (15–65 
years old), regular wage/salaried (RWS) employees who have worked full time and are not currently attending an educational institution (the same 
sample used in this paper’s empirical analysis). The figures in parentheses after some educational levels indicate the corresponding regular schooling 
years completed. The industry’s production chain length is computed as explained in Section 5.2.2. The x-axis stands for the industry’s classification 
number (see Appendix Table B.3 for the industry description). P, M, and S indicate primary, manufacturing, and service sector, respectively. Industries 
are sorted by the estimated completed years of education (SK1 in Section 5.2.1) averaged over the industry’s workforce (i.e., average years of education 
become lower when moving from left to right). 
Source: Computed by author from NSSO (2009–2010) based on weekly status. 

 

 36 



 
 

Figure 2. Correlation between Skill Level and Industry’s Production Chain Length in 
1999  

(Individual-level box plots based on all-industry sample) 

Notes: The horizontal line in the middle of the box denotes the median ChainL. 
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Figure 3. Correlation between Skill Level and Industry’s Production Chain Length in 
1999 

 (Industry-level unweighted association based on all-industry sample) 
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 Table 1. Individual-Level Skill-Sorting Regression (Eq. (4.1)) in 1999 

Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
ChainL. The explanatory variables in columns (1), (4), and (7) only include the corresponding 
skill index and a constant. In columns (2), (5), and (8), Muslim, SG1-3, Hhead, Married, Rural, 
and state dummies (plus EXP and EXP squared in case of column (2)) are also controlled for. In 
columns (3), (6), and (9), ChainL_sfamily is additionally controlled for. Robust standard errors 
are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
SK1 -0.016 *** -0.024 *** -0.017 *** -0.023 *** -0.029 *** -0.021 *** -0.002 *** -0.003 *** -0.002

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
ChainL_sfamily 0.402 *** 0.398 *** 0.098 ***

(0.016) (0.017) (0.014)
R-squared
N
F-test for ChainL_sfamily
SK2 -0.299 *** -0.332 *** -0.246 *** -0.342 *** -0.368 *** -0.278 *** -0.038 *** -0.038 *** -0.035 *

(0.012) (0.012) (0.018) (0.012) (0.013) (0.019) (0.010) (0.013) (0.020)
ChainL_sfamily 0.405 *** 0.404 *** 0.100 ***

(0.017) (0.017) (0.014)
R-squared
N
F-test for ChainL_sfamily
SK3(1) -0.253 *** -0.271 *** -0.210 *** -0.296 *** -0.305 *** -0.241 *** -0.029 *** -0.028 *** -0.021

(0.010) (0.011) (0.015) (0.011) (0.012) (0.016) (0.009) (0.011) (0.016)
ChainL_sfamily 0.403 *** 0.401 *** 0.103 ***

(0.017) (0.017) (0.014)
R-squared
N
F-test for ChainL_sfamily
SK3(2) -0.233 *** -0.242 *** -0.175 *** -0.265 *** -0.265 *** -0.193 *** -0.037 *** -0.038 *** -0.032 *

(0.010) (0.011) (0.015) (0.011) (0.011) (0.016) (0.009) (0.010) (0.016)
ChainL_sfamily 0.409 *** 0.410 *** 0.101 ***

(0.017) (0.017) (0.014)
R-squared
N
F-test for ChainL_sfamily

566.509

0.002 0.034 0.071
9,164 6,761 2,832

0.004 0.035 0.074
6,605 6,605 2,732

49.078

51.321

0.080 0.115 0.218
30,505 30,505 11,144

545.971

0.004 0.034 0.075
6,536 6,536 2,702

50.095565.958

49.607

0.079 0.114 0.221
29,870 29,870 10,899

580.147

0.006 0.036 0.077
6,536 6,536 2,702

0.064 0.100 0.208
29,870 29,870 10,89931,805 31,805 11,706

605.524

582.993

0.053 0.095 0.206

0.062 0.106 0.215
31,805 31,805 11,706

32,612 32,612 12,043
600.000

615.369

0.065 0.107 0.214

All-industry sample Manufacturing/Service sample Manufacturing sample

0.034
45,861

0.105
33,812

0.208
12,645

0.054 0.118 0.216
42,680 31,473 11,616
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Table 2. Industry-Level Skill-Sorting Regression (Eq. (4.2)) in 1999 

Notes: Figures are WLS estimates with weight = employment size of each industry. “Dep. Var.” 
denotes the dependent variable. The explanatory variables in columns (1), (4), and (7) only 
include ChainL and a constant. In columns (2), (5), and (8), ChainQ_Import, ChainQ_Skill are 
additionally included as regressors. In columns (3), (6), and (9), Import, Export, and Smallfirm 
are also additionally controlled for. Robust standard errors are in parentheses. ***p < 0.01, **p 
< 0.05, *p < 0.1 

 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ChainL -2.036*** -2.043 -2.735** -2.371*** -2.444* -3.134*** -1.205 -0.091 -1.196

(0.753) (1.386) (1.128) (0.695) (1.399) (0.796) (1.436) (1.529) (0.916)
ChainQ_Import 1.722 -0.663 -3.982 -8.408** 6.740 -3.778

(6.423) (5.792) (4.836) (4.047) (4.803) (3.662)
ChainQ_Skill -0.725 -0.785 0.356 0.145 0.425 0.748***

(0.951) (0.763) (0.419) (0.370) (0.454) (0.234)
R-squared 0.148 0.111 0.415 0.305 0.287 0.717 0.022 0.220 0.669
N 57 56 56 52 51 51 38 38 38
ChainL -0.215*** -0.129 -0.190** -0.232*** -0.148 -0.214*** -0.130 -0.025 -0.123*

(0.073) (0.132) (0.079) (0.069) (0.144) (0.067) (0.107) (0.120) (0.069)
ChainQ_Import -0.389 -0.569 -0.645 -1.003*** 0.593 -0.406

(0.470) (0.359) (0.437) (0.309) (0.373) (0.276)
ChainQ_Skill -0.031 -0.038 0.020 -0.002 -0.001 0.030

(0.059) (0.036) (0.045) (0.028) (0.042) (0.020)
R-squared 0.237 0.119 0.673 0.303 0.200 0.804 0.033 0.100 0.778
N 57 56 56 52 51 51 38 38 38
ChainL -0.240*** -0.163 -0.238** -0.264*** -0.192 -0.272*** -0.145 -0.021 -0.128

(0.090) (0.168) (0.113) (0.085) (0.181) (0.096) (0.130) (0.125) (0.085)
ChainQ_Import -0.326 -0.556 -0.705 -1.159** 0.726 -0.366

(0.609) (0.497) (0.552) (0.434) (0.462) (0.372)
ChainQ_Skill -0.041 -0.049 0.033 0.007 0.023 0.057**

(0.080) (0.054) (0.054) (0.037) (0.049) (0.027)
R-squared 0.199 0.101 0.594 0.278 0.202 0.757 0.031 0.172 0.728
N 57 56 56 52 51 51 38 38 38
ChainL -0.219** -0.124 -0.197* -0.238*** -0.147 -0.227** -0.173 -0.045 -0.165*

(0.090) (0.170) (0.108) (0.087) (0.185) (0.095) (0.128) (0.120) (0.084)
ChainQ_Import -0.457 -0.681 -0.764 -1.196*** 0.737 -0.372

(0.574) (0.457) (0.537) (0.416) (0.453) (0.349)
ChainQ_Skill -0.030 -0.039 0.030 0.004 0.013 0.050**

(0.072) (0.045) (0.055) (0.037) (0.050) (0.025)
R-squared 0.179 0.086 0.633 0.233 0.160 0.759 0.042 0.150 0.750
N 57 56 56 52 51 51 38 38 38

Manufacturing sample

SK1

SK2

SK3(1)

SK3(2)

Dep.
Var.

All-industry sample Manufacturing/Service sample
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Table 3. Industry-Level Skill-Sorting Regression: 1999 and 2009 Panels (Eq. (4.3))  

Notes: Figures are WLS estimates with weight = NSS survey weight. “Dep. Var.” denotes the 
dependent variable. The explanatory variables of each column include those in the 
corresponding column of Table 2 plus dummies for year 2009 and industries. Standard errors 
clustered by industry are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1 
 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ChainL -1.624*** -1.834*** -1.495*** -1.683*** -1.856*** -1.755*** -1.148* -1.028 -1.395*

(0.526) (0.526) (0.507) (0.610) (0.603) (0.462) (0.595) (0.698) (0.703)
ChainQ_Import -2.505 -1.908 -2.031 -1.509 -2.518 -2.158

(1.543) (1.670) (1.410) (1.187) (2.528) (2.376)
ChainQ_Skill -0.227 -0.260 -0.266 -0.388 -1.254*** -1.197**

(0.246) (0.254) (0.247) (0.273) (0.451) (0.452)
R-squared 0.683 0.660 0.681 0.733 0.710 0.757 0.419 0.530 0.562
N 114 112 112 104 102 102 76 76 76
ChainL -0.120*** -0.137*** -0.139*** -0.116** -0.131*** -0.147*** -0.169** -0.176** -0.190***

(0.040) (0.041) (0.048) (0.047) (0.046) (0.053) (0.063) (0.069) (0.066)
ChainQ_Import -0.111 -0.132 -0.093 -0.118 -0.255 -0.211

(0.105) (0.103) (0.102) (0.088) (0.155) (0.159)
ChainQ_Skill -0.023 -0.021 -0.027 -0.030 -0.078** -0.076**

(0.019) (0.019) (0.019) (0.020) (0.032) (0.032)
R-squared 0.170 0.200 0.223 0.168 0.209 0.243 0.199 0.308 0.346
N 114 112 112 104 102 102 76 76 76

All-industry sample Manufacturing/Service sample Manufacturing sample

SK1

SK2

Dep.
Var.
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Table 4. Skill Wage Premium Regression (Eq. (4.4)) in 1999 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Skill index = SK1
SK1 0.093*** 0.076*** 0.070*** 0.092*** 0.076*** 0.069*** 0.077*** 0.097*** 0.149

(0.003) (0.005) (0.010) (0.003) (0.005) (0.010) (0.017) (0.028) (0.105)
SK1*ChainL -0.010*** -0.005 -0.013** -0.009*** -0.005 -0.013** -0.007 -0.020 -0.056

(0.002) (0.003) (0.006) (0.002) (0.003) (0.006) (0.008) (0.013) (0.050)
Exp 0.050*** 0.044*** 0.014 0.049*** 0.042*** 0.014 0.045*** 0.042*** 0.034***

(0.003) (0.003) (0.010) (0.003) (0.003) (0.010) (0.004) (0.004) (0.010)
Exp^2 -0.001*** -0.001*** -0.00004 -0.001*** -0.0005*** -0.00004 -0.001*** -0.001*** -0.0004**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Muslim -0.057*** -0.040** -0.072** -0.058*** -0.045*** -0.076** -0.028 -0.005 -0.165*

(0.016) (0.016) (0.036) (0.016) (0.016) (0.037) (0.032) (0.031) (0.088)
SG1 0.021 -0.019 -0.041 0.027 -0.008 -0.046 -0.041 -0.047 -0.151

(0.028) (0.027) (0.052) (0.031) (0.031) (0.052) (0.067) (0.066) (0.121)
SG2 -0.027 -0.061*** -0.039 -0.043** -0.074*** -0.040 -0.051 -0.041 -0.081

(0.018) (0.017) (0.031) (0.019) (0.018) (0.031) (0.034) (0.032) (0.076)
SG3 -0.058*** -0.068*** -0.028 -0.057*** -0.065*** -0.028 -0.023 -0.019 -0.056

(0.013) (0.013) (0.026) (0.014) (0.013) (0.026) (0.025) (0.023) (0.054)
Hhead 0.151*** 0.130*** 0.093*** 0.157*** 0.137*** 0.097*** 0.128*** 0.124*** 0.076

(0.016) (0.015) (0.035) (0.016) (0.016) (0.035) (0.026) (0.026) (0.069)
Married 0.087*** 0.075*** 0.049 0.097*** 0.085*** 0.046 0.072** 0.071** -0.100

(0.019) (0.018) (0.051) (0.019) (0.019) (0.051) (0.030) (0.029) (0.084)
Occ1 0.258*** 0.389*** 0.419*** 0.243*** 0.378*** 0.420*** 0.823*** 0.789*** 0.671***

(0.028) (0.032) (0.046) (0.028) (0.032) (0.046) (0.148) (0.136) (0.153)
Occ2 0.291*** 0.275*** 0.327*** 0.287*** 0.269*** 0.331*** 0.480*** 0.459*** 0.513***

(0.036) (0.034) (0.082) (0.036) (0.034) (0.082) (0.071) (0.064) (0.134)
Occ3 0.480*** 0.429*** 0.418*** 0.469*** 0.423*** 0.419*** 0.986*** 0.993*** 0.076

(0.048) (0.049) (0.091) (0.049) (0.049) (0.092) (0.163) (0.188) (0.201)
Occ4 0.455*** 0.481*** 0.701*** 0.452*** 0.474*** 0.695*** 0.848*** 0.844*** 1.112***

(0.050) (0.049) (0.065) (0.052) (0.051) (0.065) (0.076) (0.074) (0.158)
Occ5 0.059*** 0.058*** 0.118*** 0.046** 0.048** 0.121*** 0.189*** 0.231*** 0.157

(0.021) (0.021) (0.038) (0.021) (0.021) (0.038) (0.060) (0.060) (0.148)
Occ6 -0.268*** -0.056* 0.057 -0.267*** -0.051* 0.059 0.147 0.222** 0.380**

(0.025) (0.030) (0.075) (0.026) (0.030) (0.075) (0.128) (0.101) (0.157)
Occ8 -0.301*** -0.151*** -0.043 0.014 0.051 -0.042 0.137 0.129 -0.436**

(0.029) (0.041) (0.084) (0.064) (0.063) (0.084) (0.151) (0.140) (0.173)
Occ9 0.108*** 0.112*** 0.093 0.073** 0.091** 0.085 0.242*** 0.213*** 0.205*

(0.035) (0.043) (0.065) (0.036) (0.045) (0.067) (0.055) (0.064) (0.119)
Occ10 0.037** 0.048*** 0.089*** 0.017 0.041** 0.091*** 0.122*** 0.120** 0.168

(0.017) (0.018) (0.033) (0.017) (0.019) (0.034) (0.047) (0.049) (0.103)
Occ11 0.071* 0.227*** 0.088 0.071* 0.210*** 0.095 0.132 0.118 0.908***

(0.040) (0.042) (0.168) (0.039) (0.041) (0.168) (0.112) (0.110) (0.180)
Temporary -0.258*** -0.268*** -0.162**

(0.073) (0.075) (0.068)
Union -0.020 -0.022 0.050

(0.048) (0.049) (0.067)
Publicfirm 0.103*** 0.106*** 0.353***

(0.034) (0.035) (0.077)

All-industry sample Manufacturing/Service sample Manufacturing sample
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Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
the logarithm of weekly wages. When using SK2, explanatory variables of each column include 
those in case of SK1 minus Exp and Exp^2 (Exp squared). When using SK3, they include those 
in case of SK2 minus occupation dummies. The reference category for social group and 
occupation is SG4 (other) and Occ7 (service worker), respectively. Robust standard errors are in 
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1 

 
 

Smallfirm -0.225*** -0.226*** -0.095
(0.037) (0.037) (0.073)

SS 0.148* 0.143* 0.086
(0.077) (0.079) (0.066)

Rural -0.161*** -0.158*** -0.008 -0.145*** -0.158*** -0.010 -0.142*** -0.116*** 0.006
(0.014) (0.014) (0.034) (0.015) (0.014) (0.034) (0.024) (0.025) (0.053)

State dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry dummies Yes Yes Yes Yes Yes Yes
R-squared 0.495 0.540 0.541 0.479 0.522 0.542 0.464 0.498 0.589
N 32,612 32,612 4,897 30,505 30,505 4,814 6,605 6,605 861
Skill index = SK2
SK2 1.139*** 0.919*** 1.030*** 1.137*** 0.905*** 1.004*** 1.264*** 1.080*** 4.276***

(0.068) (0.068) (0.186) (0.069) (0.069) (0.186) (0.338) (0.336) (1.214)
SK2*ChainL 0.005 0.052 -0.021 0.000 0.053 -0.011 -0.132 -0.090 -1.676***

(0.043) (0.041) (0.117) (0.043) (0.041) (0.117) (0.162) (0.160) (0.591)
R-squared 0.501 0.547 0.544 0.487 0.530 0.545 0.476 0.507 0.590
N 32,612 32,612 4,897 30,505 30,505 4,814 6,605 6,605 861
Skill index = SK3(1)
SK3(1) 1.357*** 1.019*** 1.062*** 1.270*** 0.996*** 1.051*** 1.450*** 1.321*** 3.582***

(0.059) (0.056) (0.129) (0.059) (0.056) (0.130) (0.309) (0.319) (1.024)
SK3(1)*ChainL -0.133*** -0.013 -0.043 -0.097** -0.009 -0.039 -0.192 -0.169 -1.256**

(0.041) (0.038) (0.081) (0.041) (0.038) (0.081) (0.153) (0.157) (0.491)
R-squared 0.484 0.544 0.535 0.475 0.527 0.535 0.452 0.484 0.543
N 31,805 31,805 4,883 29,870 29,870 4,800 6,536 6,536 860
Skill index = SK3(2)
SK3(2) 1.359*** 1.000*** 1.050*** 1.256*** 0.975*** 1.034*** 1.535*** 1.359*** 3.832***

(0.056) (0.055) (0.128) (0.056) (0.054) (0.128) (0.305) (0.305) (0.990)
SK3(2)*ChainL -0.123*** 0.000 -0.034 -0.079** 0.005 -0.029 -0.224 -0.176 -1.347***

(0.039) (0.037) (0.082) (0.039) (0.037) (0.082) (0.151) (0.151) (0.478)
R-squared 0.488 0.546 0.528 0.483 0.531 0.529 0.462 0.492 0.548
N 31,805 31,805 4,883 29,870 29,870 4,800 6,536 6,536 860
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Table 5. Skill Wage Premium Regression (Eq. (4.4)) in 1999 with Additional Interaction 
Terms with Skill Index 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

SK1 0.051*** -0.007 0.010 0.067*** -0.010 0.007 0.025 -0.025 0.032
(0.018) (0.036) (0.036) (0.018) (0.036) (0.036) (0.032) (0.095) (0.095)

SK1*ChainL -0.014*** -0.021** -0.025** -0.014*** -0.019* -0.022** -0.006 0.022 0.006
(0.005) (0.010) (0.010) (0.005) (0.010) (0.010) (0.016) (0.045) (0.043)

SK1*ChainQ_Import 0.096*** 0.215*** 0.167** 0.092*** 0.211*** 0.162** 0.069 0.358** 0.376**
(0.028) (0.064) (0.067) (0.028) (0.065) (0.068) (0.069) (0.175) (0.177)

SK1*ChainQ_Skill 0.005** 0.011** 0.013*** 0.003 0.010** 0.012*** 0.005 -0.004 -0.006
(0.002) (0.005) (0.005) (0.002) (0.005) (0.005) (0.005) (0.011) (0.012)

SK1*Temporary -0.027** -0.028** -0.013
(0.011) (0.012) (0.015)

SK1*Union -0.004 -0.005 -0.003
(0.008) (0.008) (0.013)

SK1*Publicfirm -0.017** -0.018*** -0.051***
(0.007) (0.007) (0.018)

SK1*Smallfirm -0.022*** -0.021*** -0.026*
(0.007) (0.007) (0.014)

R-squared 0.530 0.592 0.598 0.513 0.593 0.598 0.500 0.598 0.609
N 25,334 3,467 3,467 23,227 3,384 3,384 6,605 861 861
SK2 0.470* 0.176 0.298 0.525** 0.205 0.334 0.128 2.376 1.742

(0.252) (0.879) (0.858) (0.259) (0.881) (0.860) (0.409) (1.519) (1.491)
SK2*ChainL -0.091 -0.475** -0.498** -0.090 -0.440** -0.459** -0.135 -1.797** -1.603**

(0.061) (0.198) (0.207) (0.061) (0.199) (0.208) (0.194) (0.794) (0.722)
SK2*ChainQ_Import 0.279 3.508*** 2.729** 0.171 3.491*** 2.718** -0.172 2.033 3.138

(0.343) (1.291) (1.354) (0.351) (1.300) (1.364) (0.740) (3.235) (3.360)
SK2*ChainQ_Skill 0.096*** 0.199* 0.252** 0.088*** 0.185 0.236** 0.153** 0.274 0.319

(0.030) (0.118) (0.116) (0.031) (0.119) (0.116) (0.064) (0.235) (0.232)
SK2*Temporary -0.655** -0.670** -0.431

(0.268) (0.272) (0.379)
SK2*Union -0.036 -0.041 0.191

(0.152) (0.154) (0.299)
SK2*Publicfirm -0.385*** -0.395*** -1.154***

(0.130) (0.131) (0.295)
SK2*Smallfirm -0.257** -0.237* -0.862***

(0.128) (0.129) (0.285)
R-squared 0.537 0.591 0.596 0.521 0.591 0.596 0.509 0.596 0.612
N 25,334 3,467 3,467 23,227 3,384 3,384 6,605 861 861
SK3(1) 0.662*** 0.449 0.569 0.712*** 0.448 0.580 0.176 1.890* 2.298**

(0.229) (0.510) (0.517) (0.237) (0.511) (0.519) (0.413) (1.088) (1.075)
SK3(1)*ChainL -0.149*** -0.289** -0.272** -0.142*** -0.273** -0.255* -0.152 -1.540** -1.505**

(0.054) (0.131) (0.134) (0.054) (0.132) (0.135) (0.185) (0.643) (0.587)
SK3(1)*ChainQ_Import 0.390 2.022** 1.804* 0.352 1.987** 1.785* 0.195 -0.605 0.577

(0.290) (0.876) (0.930) (0.292) (0.882) (0.934) (0.677) (2.217) (2.380)
SK3(1)*ChainQ_Skill 0.082*** 0.130* 0.143** 0.072** 0.126* 0.137* 0.155** 0.341** 0.314**

(0.028) (0.070) (0.071) (0.029) (0.070) (0.072) (0.068) (0.156) (0.155)
SK3(1)*Temporary -0.504*** -0.507** -0.294

(0.194) (0.197) (0.268)
SK3(1)*Union -0.054 -0.060 -0.300

(0.111) (0.112) (0.211)

All-industry sample Manufacturing/Service sample Manufacturing sample
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Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
the logarithm of weekly wages. Other control variables in columns (1), (4), and (7) are the same 
as those in columns (2), (5), or (8) in Table 4. Other control variables of the remaining columns 
are the same as those in columns (3), (6), or (9) in Table 4. Robust standard errors are in 
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1 

 

SK3(1)*Publicfirm -0.182** -0.184** -0.554***
(0.087) (0.087) (0.199)

SK3(1)*Smallfirm -0.070 -0.061 -0.551***
(0.084) (0.084) (0.178)

R-squared 0.534 0.578 0.583 0.517 0.579 0.583 0.488 0.552 0.565
N 24,624 3,459 3,459 22,689 3,376 3,376 6,536 860 860
SK3(2) 0.599*** 0.428 0.569 0.716*** 0.452 0.602 0.191 1.694 2.019*

(0.224) (0.545) (0.549) (0.230) (0.546) (0.551) (0.414) (1.096) (1.082)
SK3(2)*ChainL -0.130** -0.294** -0.288** -0.120** -0.273** -0.265* -0.171 -1.379** -1.331**

(0.053) (0.137) (0.142) (0.053) (0.138) (0.142) (0.181) (0.641) (0.572)
SK3(2)*ChainQ_Import 0.567** 2.897*** 2.546*** 0.593** 2.893*** 2.558*** 0.078 1.224 2.455

(0.273) (0.881) (0.946) (0.274) (0.887) (0.952) (0.670) (2.118) (2.244)
SK3(2)*ChainQ_Skill 0.084*** 0.124 0.146* 0.063** 0.114 0.135* 0.164** 0.293* 0.268*

(0.027) (0.075) (0.075) (0.028) (0.076) (0.076) (0.068) (0.161) (0.159)
SK3(2)*Temporary -0.546*** -0.551*** -0.363

(0.201) (0.203) (0.265)
SK3(2)*Union -0.073 -0.080 -0.217

(0.117) (0.118) (0.224)
SK3(2)*Publicfirm -0.218** -0.221** -0.628***

(0.092) (0.093) (0.212)
SK3(2)*Smallfirm -0.142 -0.129 -0.632***

(0.093) (0.092) (0.201)
R-squared 0.536 0.572 0.578 0.522 0.573 0.579 0.496 0.559 0.573
N 24,624 3,459 3,459 22,689 3,376 3,376 6,536 860 860

 45 



 
 

Table 6. Selection-Corrected Skill Wage Premium Regression in 1999 

(1) (2) (3) (4)
Skill index SK1 SK2 SK3(1) SK3(2)

Skill 0.185*** 1.693*** 1.378*** 1.271***
(0.014) (0.153) (0.130) (0.135)

Skill*ChainL -0.0613*** -0.237** -0.175** -0.083
(0.009) (0.102) (0.087) (0.091)

     *Skill*ChainL 0.030*** 0.010 0.003 -0.043
(0.005) (0.073) (0.061) (0.062)

-0.332*** 0.074 0.068 0.029
(0.093) (0.072) (0.073) (0.072)

R-squared 0.459 0.467 0.464 0.470
N 12,052 12,043 11,706 11,706
F-test for selection vars. 18.396 0.587 0.503 0.476
 p-value 0.000 0.556 0.605 0.621

𝜀𝜀1�

𝜀𝜀1�

 
Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
the logarithm of weekly wages. Sample is based on all industries. As mentioned in Section 7.1, 

1ε
  denotes the residual from the skill-sorting regression of equation (4.1) (=columns (3), (6), 

and (9) in Table 1). “Selection vars.” denotes 1ε
  and ChainLSkill **1ε

 . Skill, ChainL, 
Muslim, SG1-3, Hhead, Married, Rural, State dummies are included as other regressors in all 
regressions. When using SK1, Exp and its square are additionally controlled for. Bootstrap 
standard errors based on 1000 replications are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1  
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Table 7. Alternative Reasons for Inter-industry Skill Wage Differentials (1999) 
 

AltReason = Mob Power EW Mob Power EW Mob Power EW
(1) (2) (3) (4) (5) (6) (7) (8) (9)

SK1 0.010 0.029 -0.017 0.008 0.024 -0.021 0.022 0.039 -0.095
(0.036) (0.039) (0.039) (0.036) (0.039) (0.039) (0.096) (0.094) (0.133)

SK1*ChainL -0.024** -0.030*** -0.024** -0.021** -0.027** -0.021** 0.008 -0.014 0.007
(0.010) (0.011) (0.010) (0.010) (0.011) (0.010) (0.043) (0.044) (0.043)

SK1*ChainQ_Import 0.167** 0.160** 0.185*** 0.162** 0.154** 0.180*** 0.382** 0.345* 0.281
(0.067) (0.068) (0.067) (0.068) (0.069) (0.068) (0.177) (0.179) (0.204)

SK1*ChainQ_Skill 0.013*** 0.012*** 0.013*** 0.012*** 0.012*** 0.013*** -0.005 0.001 0.005
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.012) (0.013) (0.015)

SK1*AltReason 0.000 -0.001 0.020** 0.000 -0.001 0.021** 0.001 -0.007 0.061
(0.001) (0.001) (0.010) (0.001) (0.001) (0.010) (0.002) (0.005) (0.042)

R-squared 0.598 0.598 0.599 0.599 0.599 0.600 0.609 0.611 0.611
N 3,467 3,467 3,467 3,384 3,384 3,384 861 861 861
SK2 0.322 0.298 -0.155 0.348 0.327 -0.134 1.717 1.905 -2.090

(0.858) (0.858) (0.892) (0.860) (0.860) (0.895) (1.521) (1.503) (2.611)
SK2*ChainL -0.507** -0.497** -0.547*** -0.466** -0.454** -0.509** -1.608** -2.020*** -1.433**

(0.208) (0.210) (0.206) (0.210) (0.211) (0.207) (0.726) (0.766) (0.712)
SK2*ChainQ_Import 2.822** 2.730** 3.404** 2.778** 2.730** 3.406** 3.087 2.058 0.830

(1.367) (1.355) (1.383) (1.375) (1.365) (1.390) (3.390) (3.355) (3.712)
SK2*ChainQ_Skill 0.255** 0.252** 0.259** 0.239** 0.235** 0.244** 0.328 0.475* 0.607**

(0.116) (0.116) (0.116) (0.116) (0.116) (0.116) (0.246) (0.242) (0.301)
SK2*AltReason 0.018 0.000 0.390** 0.012 0.002 0.400** 0.007 -0.148 1.746*

(0.029) (0.006) (0.183) (0.029) (0.006) (0.184) (0.063) (0.094) (0.922)
R-squared 0.596 0.596 0.597 0.596 0.596 0.597 0.612 0.615 0.614
N 3,467 3,467 3,467 3,384 3,384 3,384 861 861 861
SK3(1) 0.577 0.670 0.585 0.582 0.663 0.593 2.270** 2.186** 0.671

(0.515) (0.529) (0.516) (0.518) (0.530) (0.518) (1.084) (1.063) (1.601)
SK3(1)*ChainL -0.292** -0.315** -0.354** -0.274** -0.293** -0.336** -1.506** -1.625*** -1.487**

(0.135) (0.146) (0.143) (0.137) (0.149) (0.145) (0.590) (0.589) (0.583)
SK3(1)*ChainQ_Import 1.921** 1.740* 2.361** 1.886** 1.723* 2.330** 0.516 0.487 -0.419

(0.929) (0.931) (0.992) (0.934) (0.936) (0.997) (2.453) (2.345) (2.429)
SK3(1)*ChainQ_SKill 0.153** 0.143** 0.104 0.148** 0.138* 0.100 0.322* 0.390** 0.438**

(0.072) (0.071) (0.074) (0.073) (0.071) (0.075) (0.172) (0.156) (0.186)
SK3(1)*AltReason 0.028 -0.008 0.310** 0.026 -0.007 0.304* 0.004 -0.097 0.866

(0.021) (0.008) (0.155) (0.021) (0.008) (0.156) (0.038) (0.071) (0.643)
R-squared 0.583 0.583 0.584 0.584 0.584 0.584 0.565 0.567 0.567
N 3,459 3,459 3,459 3,376 3,376 3,376 860 860 860
SK3(2) 0.575 0.580 0.514 0.602 0.607 0.544 2.104* 1.890* -0.159

(0.548) (0.548) (0.547) (0.550) (0.550) (0.549) (1.086) (1.074) (1.732)
SK3(2)*ChainL -0.292** -0.298** -0.382*** -0.266* -0.272* -0.359** -1.324** -1.457** -1.344**

(0.144) (0.145) (0.144) (0.145) (0.146) (0.145) (0.571) (0.575) (0.568)
SK3(2)*ChainQ_Import 2.567*** 2.531** 3.280*** 2.561*** 2.547*** 3.269*** 2.655 2.457 0.781

(0.952) (0.947) (0.994) (0.959) (0.952) (0.999) (2.304) (2.222) (2.447)
SK3(2)*ChainQ_SKill 0.148* 0.148* 0.085 0.135* 0.137* 0.077 0.243 0.354** 0.457**

(0.076) (0.076) (0.080) (0.077) (0.076) (0.080) (0.171) (0.158) (0.204)
SK3(2)*AltReason 0.006 -0.002 0.521*** 0.001 -0.001 0.505*** -0.015 -0.119 1.129

(0.022) (0.004) (0.185) (0.022) (0.004) (0.185) (0.039) (0.075) (0.715)
R-squared 0.578 0.578 0.580 0.579 0.579 0.581 0.573 0.576 0.576
N 3,459 3,459 3,459 3,376 3,376 3,376 860 860 860

All-industry sample Manufacturing/Service sample Manufacturing sample
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Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
the logarithm of weekly wages. Other control variables are the same as those in columns (3), (6), 
or (9) in Table 5. Robust standard errors are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1  

 
 

Table 8. Individual-level Skill-Sorting Regression (Eq. (4.1)) in 2009 

Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
ChainL. The explanatory variables of each column are the same as those in the corresponding 
column of Table 1. SK1 in this table is computed based on the detailed educational classification, 
which is only available for 2009 (see Section 7.3). Robust standard errors are in parentheses. 
***p < 0.01, **p < 0.05, *p < 0.1  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
SK1 -0.025*** -0.033*** -0.024*** -0.028*** -0.035*** -0.024*** -0.001 -0.001 0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002)
ChainL_sfamily 0.376*** 0.378*** 0.124***

(0.022) (0.022) (0.022)
R-squared 0.074 0.157 0.223 0.081 0.163 0.227 0.001 0.061 0.116
N 29,951 29,927 10,570 28,731 28,708 10,157 4,960 4,956 2,067
F-test for ChainL_sfamily 301.645 294.716 31.054
SK2 -0.409*** -0.443*** -0.307*** -0.427*** -0.457*** -0.314*** -0.049*** -0.023 0.018

(0.012) (0.014) (0.024) (0.013) (0.015) (0.025) (0.015) (0.019) (0.034)
ChainL_sfamily 0.379*** 0.382*** 0.125***

(0.022) (0.022) (0.022)
R-squared 0.106 0.153 0.220 0.110 0.157 0.222 0.005 0.057 0.113
N 29,322 29,322 10,381 28,148 28,148 9,987 4,917 4,917 2,042
F-test for ChainL_sfamily 300.888 296.118 30.929

All-industry sample Manufacturing/Service sample Manufacturing sample

 48 



 
 

Table 9. Industry-level Skill-Sorting Regression (Eq. (4.2)) in 2009 

Notes: Figures are WLS estimates with weight = employment size of each industry. “Dep. Var.” 
denotes the dependent variable. The explanatory variables of each column are the same as those 
in the corresponding column of Table 2. SK1 in this table is computed based on the detailed 
educational classification as in Table 8. Robust standard errors are in parentheses. ***p < 0.01, 
**p < 0.05, *p < 0.1  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ChainL -2.957*** -3.052* -3.582*** -2.947*** -2.674* -3.116*** -0.639 0.343 0.196

(0.801) (1.530) (1.083) (0.806) (1.368) (0.760) (1.096) (1.420) (0.916)
ChainQ_Import 0.407 -0.571 -1.904 -3.661** 4.927* 1.451

(3.643) (2.514) (3.605) (1.405) (2.773) (1.869)
ChainQ_Skill 0.335 -0.351 0.563 -0.052 0.516 0.124

(0.690) (0.542) (0.652) (0.426) (0.308) (0.190)
R-squared 0.278 0.256 0.649 0.329 0.335 0.770 0.008 0.242 0.558
N 54 53 53 50 49 49 31 31 31
ChainL -0.259*** -0.235* -0.265*** -0.258*** -0.219* -0.246*** -0.094 -0.045 -0.055

(0.065) (0.122) (0.074) (0.064) (0.115) (0.060) (0.078) (0.100) (0.056)
ChainQ_Import -0.030 -0.118 -0.123 -0.264* 0.241 -0.047

(0.242) (0.168) (0.265) (0.150) (0.199) (0.085)
ChainQ_Skill 0.002 -0.041 0.010 -0.029 0.021 -0.013

(0.050) (0.035) (0.049) (0.031) (0.026) (0.015)
R-squared 0.369 0.269 0.762 0.390 0.295 0.809 0.038 0.144 0.651
N 54 53 53 50 49 49 31 31 31

Dep.
Var.

All-industry sample Manufacturing/Service sample Manufacturing sample

SK1

SK2
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Table 10. Skill Wage Premium Regression (Eq. (4.4)) in 2009 

 

(1) (2) (3) (4) (5) (6)
SK1 0.106*** 0.059*** 0.073*** -0.018 0.067 0.073

(0.004) (0.007) (0.011) (0.038) (0.057) (0.058)
SK1*ChainL -0.016*** 0.004 -0.013* 0.003 -0.014 -0.016

(0.002) (0.004) (0.007) (0.007) (0.011) (0.012)
SK1*ChainQ_Import 0.054*** 0.026 0.028

(0.019) (0.037) (0.038)
SK1*ChainQ_Skill 0.008** 0.000 0.000

(0.004) (0.006) (0.006)
R-squared 0.490 0.549 0.616 0.543 0.636 0.638
N 29,322 29,322 7,169 23,019 5,273 5,273
SK1 0.107*** 0.063*** 0.072*** -0.038 0.065 0.068

(0.004) (0.007) (0.011) (0.038) (0.057) (0.058)
SK1*ChainL -0.015*** 0.002 -0.013* 0.003 -0.014 -0.017

(0.002) (0.004) (0.007) (0.007) (0.011) (0.012)
SK1*ChainQ_Import 0.041** 0.033 0.035

(0.019) (0.038) (0.039)
SK1*ChainQ_Skill 0.011*** 0.001 0.001

(0.004) (0.006) (0.006)
R-squared 0.483 0.543 0.623 0.539 0.644 0.647
N 28,148 28,148 6,981 21,845 5,085 5,085
SK1 0.102*** 0.076** 0.105** -0.066 -0.072 -0.065

(0.014) (0.031) (0.049) (0.053) (0.082) (0.081)
SK1*ChainL -0.016** -0.008 -0.024 -0.002 -0.019 -0.022

(0.007) (0.015) (0.023) (0.017) (0.028) (0.029)
SK1*ChainQ_Import 0.032 0.055 0.042

(0.035) (0.058) (0.058)
SK1*ChainQ_Skill 0.016*** 0.020** 0.020**

(0.005) (0.009) (0.009)
R-squared 0.507 0.551 0.680 0.555 0.684 0.688
N 4,917 4,917 887 4,917 887 887
SK2 1.134*** 0.901*** 1.484*** 0.531 1.772* 1.958**

(0.089) (0.097) (0.185) (0.495) (0.964) (0.967)
SK2*ChainL 0.068 0.064 -0.334*** -0.117 -0.625*** -0.663***

(0.053) (0.057) (0.118) (0.092) (0.188) (0.190)
SK2*ChainQ_Import 1.004*** 1.689** 1.706**

(0.254) (0.686) (0.679)
SK2*ChainQ_Skill 0.064 -0.002 -0.030

(0.049) (0.098) (0.098)
R-squared 0.495 0.557 0.620 0.554 0.641 0.644
N 29,322 29,322 7,169 23,019 5,273 5,273

All-
industry
sample

SK1

SK2

All-
industry
sample

Manufact
uring/Ser
vice
sample

Manufact
uring
sample
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Notes: Figures are WLS estimates with weight = NSS survey weight. The dependent variable is 
the logarithm of weekly wages. SK1 in this table is computed based on the detailed educational 
classification as in Table 8. Robust standard errors are in parentheses. ***p < 0.01, **p < 0.05, 
*p < 0.1  

 
 
 

SK2 1.173*** 0.948*** 1.464*** 0.360 1.871* 2.031**
(0.089) (0.096) (0.186) (0.483) (0.968) (0.969)

SK2*ChainL 0.051 0.048 -0.331*** -0.123 -0.634*** -0.671***
(0.053) (0.057) (0.118) (0.091) (0.188) (0.190)

SK2*ChainQ_Import 0.951*** 1.783*** 1.805***
(0.252) (0.688) (0.684)

SK2*ChainQ_Skill 0.090* -0.017 -0.041
(0.048) (0.098) (0.098)

R-squared 0.488 0.551 0.626 0.550 0.649 0.653
N 28,148 28,148 6,981 21,845 5,085 5,085
SK2 1.147*** 1.891*** 3.267*** -0.014 -0.539 -0.479

(0.391) (0.398) (0.945) (0.624) (1.303) (1.347)
SK2*ChainL -0.023 -0.430** -1.073** -0.490** -0.674 -0.561

(0.185) (0.189) (0.438) (0.226) (0.484) (0.504)
SK2*ChainQ_Import 0.007 2.592** 2.495**

(0.453) (1.005) (0.974)
SK2*ChainQ_Skill 0.255*** 0.302* 0.240

(0.068) (0.161) (0.162)
R-squared 0.522 0.564 0.686 0.568 0.695 0.700
N 4,917 4,917 887 4,917 887 887

column (1) column (2) column (3) column (1) column (2) column (3)Control variables are
the same as those in: in Table 4 in Table 5

Manufact
uring/Ser
vice
sample

Manufact
uring
sample

SK2
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Appendix A. Description of Variables and Summary Statistics 
 
(a) Industry-level statistics 
Variable Description 1999 2009 

  Mean Std. Dev. Mean Std. Dev. 
SK1 Skill index 1 8.442 2.017 9.126 2.071 
SK2 Skill index 2 -0.053 0.173 -0.060 0.157 

SK3(1) Skill index 3(1) -0.062 0.201 -0.026 0.098 
SK3(2) Skill index 3(2) -0.053 0.197 -0.012 0.097 
ChainL Length of domestic production chains 1.838 0.360 1.891 0.400 

ChainQ_Import Dependence on imported inputs 0.109 0.090 0.181 0.150 

ChainQ_Skill 
Skill level (years of education) 
embodied in inputs from other 

industries 
6.938 0.762 7.860 0.681 

Import % of final goods imports in industry 
output 11.965 16.753 11.363 16.042 

Export % of final goods exports in industry 
output 11.492 17.330 9.205 10.610 

Smallfirm Employment % of small firms with 
fewer than 10 employees 56.091 29.154 55.943 27.040 

Notes: Number of observations (industries) is 56 for ChainQ_Skill and 57 for other variables.  
 
(b) Individual-level statistics 

  1999 2009 

Variable Description Mean Std. 
Dev. Mean Std. 

Dev. 
Sample 1: Sample used in the regressions with specifications from column(1) in Table 4 

SK1 
Skill index 1 (in 2009, figures in the second row use a 
more detailed educational classification. See Section 
7.3) 

8.934 4.712 9.919 4.461 

NA NA 10.121 4.689 

SK2 Skill index 2 0.000 0.364 0.000 0.344 
SK3(1) Skill index 3(1) 0.000 0.424 0.000 0.320 
SK3(2) Skill index 3(2) 0.000 0.422 0.000 0.326 
Wage Weekly wage (rupees) 1,000 952 2,313 2,652 

ChainL Length of domestic production chains of affiliated 
industry 1.557 0.427 1.580 0.432 

Age Age 36.477 11.034 36.095 11.188 
Exp Estimated years of work experience 22.543 11.659 21.176 11.903 

Muslim Dummy : 1 if religion is Islam, 0 otherwise 0.098 0.298 0.103 0.304 

SG1 Dummy : 1 if social group is scheduled tribe, 0 
otherwise 0.051 0.220 0.046 0.209 

SG2 Dummy : 1 if social group is scheduled caste, 0 
otherwise 0.147 0.354 0.165 0.371 
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SG3 Dummy : 1 if social group is other backward class, 0 
otherwise 0.295 0.456 0.358 0.480 

SG4 Dummy : 1 if social group is others, 0 otherwise 0.507 0.500 0.431 0.495 
Hhead Dummy : 1 if head of the household, 0 otherwise 0.713 0.453 0.668 0.471 

Married Dummy : 1 if currently married, 0 otherwise 0.799 0.401 0.760 0.427 
Occ1 Dummy : 1 if professionals, 0 otherwise 0.122 0.327 0.153 0.360 
Occ2 Dummy : 1 if technicians, 0 otherwise 0.063 0.243 0.027 0.162 

Occ3 Dummy : 1 if government administrators or 
executive officials, 0 otherwise 0.011 0.103 0.007 0.083 

Occ4 Dummy : 1 if managers, 0 otherwise 0.024 0.152 0.040 0.196 

Occ5 Dummy : 1 if clerical and related workers, 0 
otherwise 0.123 0.328 0.128 0.334 

Occ6 Dummy : 1 if sales workers, 0 otherwise 0.069 0.254 0.089 0.285 
Occ7 Dummy : 1 if service workers, 0 otherwise 0.139 0.346 0.133 0.339 

Occ8 Dummy : 1 if farmers, fishermen, hunters, loggers, 
or related workers, 0 otherwise 0.049 0.216 0.035 0.184 

Occ9 
Dummy : 1 if production and related workers, 
transport equipment operators and laborers 
(supervisors and foremen), 0 otherwise 

0.026 0.160 

0.387 0.487 

Occ10 
Dummy : 1 if production and related workers, 
transport equipment operators and laborers (other 
than supervisors and foremen), 0 otherwise 

0.351 0.477 

Occ11 Dummy : 1 if occupation is not classified, 0 
otherwise 0.023 0.150 0.001 0.035 

Rural Dummy : 1 if rural sample, 0 otherwise 0.376 0.484 0.359 0.480 
Sample 2: Sample used in the regressions with specifications from column(3) in Table 4 

Temporary Dummy : 1 if has temporary employment, 0 if has 
permanent employment 0.104 0.306 0.132 0.339 

Union Dummy : 1 if union/association member, 0 
otherwise 0.834 0.372 0.826 0.379 

Publicfirm Dummy : 1 if working for public or semi-public 
enterprise, 0 otherwise 0.646 0.478 0.586 0.493 

Smallfirm Dummy : 1 if the number of workers in the 
enterprise is fewer than 10, 0 otherwise 0.272 0.445 0.298 0.457 

SS 
Dummy : 1 if covered under Provident Fund (in 
1999) or eligible for social security benefits (in 
2009), 0 otherwise 

0.815 0.388 0.753 0.431 

Sample 3: Sample used in the regressions with specifications from column (4) in Table 1 
ChainL 

_sfamily 
Average ChainL of other family members of the 
same gender 1.584 0.328 1.647 0.354 

Notes: Sample size is as follows. Sample 1: 32,612 in 1999 (31,805 for SK3) and 29,322 in 2009 
(29,230 for SK3). Sample2: 4,897 in 1999 and 7,169 in 2009. Sample 3: 12,645 in 1999 and 
10,570 in 2009. For more details on the occupation dummies (Occ1-Occ11), see Appendix Table 
B.4(a). 
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Appendix B (Supplementary Materials) 
 

Table B.1. Summary Statistics of Key Variables by Industry in 1999 
 (sorted by ChainL) 

No. Sector Industry name ChainL SK1 SK1 SK2 SK3(1) SK3(2)
ChainQ
_Import

ChainQ
_Skill

57 S
Public
administration/defense

1.000 10.256 10.112 0.172 0.181 0.174 0.000

2 P Forestry/logging 1.169 7.283 2.724 -0.020 -0.150 -0.073 0.013 6.742
54 S Education/Research 1.206 12.655 12.697 0.305 0.408 0.382 0.008 6.896
5 P Other mining 1.216 8.759 3.797 0.006 -0.006 0.018 0.040 7.436

51 S Post/Telecommunication 1.232 10.838 10.840 0.144 0.151 0.126 0.032 7.325
3 P Fishing 1.240 5.299 3.245 -0.212 -0.323 -0.275 0.012 6.813
6 M Dairy product 1.246 8.470 7.010 -0.072 -0.131 -0.121 0.016 4.778

47 S Wholesale/Retail 1.292 8.334 7.178 -0.161 -0.175 -0.217 0.046 7.392
52 S Finance (banking etc.) 1.320 12.538 12.417 0.296 0.320 0.326 0.010 6.727
1 P Agriculture 1.415 4.217 3.676 -0.220 -0.320 -0.261 0.027 8.004

53 S Insurance 1.427 14.007 13.663 0.421 0.461 0.448 0.046 7.882
23 M Basic chemicals 1.476 10.305 8.701 0.060 0.044 0.061 0.532 7.239
45 S Gas/Water 1.482 8.599 8.304 0.055 0.072 0.069 0.070 6.083
4 P Coal/lignite mining 1.503 5.902 5.586 -0.031 -0.077 -0.045 0.018 7.466

56 S Other services 1.505 8.385 6.323 -0.074 -0.093 -0.106 0.099 7.117

19 M
Wood and its product
(excl. furniture)

1.585 5.436 4.068 -0.292 -0.333 -0.292 0.126 6.117

18 M Wooden furniture 1.658 5.873 5.565 -0.317 -0.283 -0.238 0.129 6.114

29 M
Structural clay/ceramic
products

1.670 6.480 3.357 -0.135 -0.168 -0.155 0.263 6.406

31 M
Other non-metalic
mineral products

1.673 6.867 4.392 -0.195 -0.242 -0.231 0.246 6.857

48 S Hotel/Restaurant 1.816 6.465 5.484 -0.256 -0.317 -0.317 0.148 5.303

22 M
Refined petroleum/Coke
product

1.823 10.124 9.088 0.113 0.119 0.140 0.155 5.284

34 M
Hand tools/General
hardware

1.839 7.974 5.275 -0.259 -0.247 -0.240 0.208 7.576

50 S Other transport/storage 1.883 7.461 5.530 -0.130 -0.177 -0.133 0.054 7.332
46 S Construction 1.911 6.841 4.241 -0.143 -0.125 -0.106 0.038 6.821

40 M
Radio/TV/Communicatio
n equipment

1.934 10.157 9.595 -0.073 -0.007 -0.041 0.224 7.928

9 M Beverage/Tobacco 1.939 7.559 4.129 -0.120 -0.197 -0.167 0.056 6.213
13 M Jute etc. textile 1.948 5.513 5.281 -0.110 -0.204 -0.180 0.098 6.306

36 M
General/Special
purpose/office/other
non-electrical machinery

1.949 9.841 8.864 0.034 0.047 0.066 0.216 7.735

30 M Cement 1.954 8.418 7.727 0.013 -0.006 0.030 0.167 6.784
49 S Railway transport 1.968 8.589 8.450 0.102 0.091 0.126 0.034 8.234
25 M Pharmaceuticals 1.971 10.931 10.618 0.044 0.021 0.032 0.180 7.304
11 M Silk textile 1.974 7.481 4.706 -0.079 -0.123 -0.127 0.057 6.310
38 M Electrical appliances 1.983 8.477 8.275 -0.234 -0.153 -0.184 0.188 7.549
32 M Basic iron/steel 2.001 9.869 9.100 0.098 0.112 0.132 0.173 7.240
26 M Other chemicals 2.003 9.945 9.224 0.062 0.047 0.055 0.167 7.253
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Notes: P, M, and S in the column “sector” denote primary, manufacturing, and service sectors, 
respectively.  

 

21 M Publishing/printing 2.036 8.737 9.023 -0.071 -0.066 -0.089 0.075 7.199
24 M Fertilizer 2.046 11.423 11.224 0.280 0.338 0.385 0.153 7.131
44 S Electricity 2.052 9.635 9.401 0.117 0.192 0.185 0.123 7.224
33 M Basic non-ferrous metals 2.053 8.193 7.774 -0.111 -0.116 -0.138 0.193 7.481
39 M Electric motors etc. 2.089 9.435 9.348 0.011 0.076 0.055 0.174 7.843
27 M Rubber products 2.101 9.709 9.110 0.014 0.008 0.047 0.152 6.713
37 M Wire/cable etc. 2.104 10.275 10.197 0.067 0.146 0.128 0.186 7.620
7 M Sugar 2.112 8.696 6.716 0.057 0.020 0.042 0.040 4.951

35 M Other metal product 2.120 7.714 7.136 -0.133 -0.141 -0.140 0.169 7.869
43 M Other manufacturing 2.134 7.391 6.655 -0.243 -0.203 -0.264 0.161 7.553

41 M
Transport equipment
(Motor vehicle etc.)

2.139 10.570 9.964 0.168 0.209 0.206 0.126 7.613

14 M Other textile products 2.148 6.286 4.972 -0.276 -0.333 -0.303 0.071 6.569

42 M
Other transport
equipment

2.160 5.155 5.206 -0.348 -0.388 -0.386 0.125 7.806

55 S
Medical and health
services

2.161 10.883 11.355 0.162 0.225 0.218 0.023 7.101

28 M Plastic products 2.162 9.345 9.616 -0.124 -0.157 -0.138 0.108 7.107
10 M Cotton/woolen textile 2.183 6.423 5.625 -0.192 -0.274 -0.268 0.069 6.628
17 M Leather footwear 2.186 7.304 4.118 -0.189 -0.165 -0.169 0.034 6.687
15 M Wearing apparel 2.239 7.167 6.321 -0.254 -0.256 -0.248 0.083 6.504
20 M Paper and its products 2.283 8.099 7.904 -0.117 -0.178 -0.153 0.076 7.083
8 M Other food products 2.284 6.568 5.908 -0.196 -0.242 -0.249 0.054 5.659

12 M Man-made fiber textiles 2.332 8.253 8.333 -0.175 -0.238 -0.223 0.103 6.904

16 M
Leather and its product
(excl. footwear)

2.414 7.797 6.761 -0.249 -0.211 -0.209 0.035 6.747
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Table B.2. Industry-Level Skill-Sorting Regression When Using ChainQ_Skilltotal: 
1999 and 2009 panel 

(1) (2) (3) (4) (5) (6)
ChainL -1.045* -0.892 -0.974* -1.006 -1.718** -2.114***

(0.540) (0.568) (0.573) (0.613) (0.643) (0.605)
ChainQ_Import -0.616 -0.265 -0.811 -0.517 -2.419 -2.074

(1.208) (1.350) (1.229) (1.204) (2.471) (2.269)
ChainQ_Skilltotal 0.805*** 0.787*** 0.664*** 0.541*** 0.672 0.745

(0.249) (0.236) (0.166) (0.193) (0.404) (0.457)
R-squared 0.768 0.776 0.782 0.797 0.474 0.523
N 114 114 104 104 76 76
ChainL -0.090* -0.100* -0.075 -0.091 -0.229*** -0.240***

(0.050) (0.054) (0.058) (0.067) (0.063) (0.063)
ChainQ_Import -0.012 -0.026 -0.018 -0.035 -0.255* -0.211

(0.107) (0.096) (0.110) (0.098) (0.130) (0.133)
ChainQ_Skilltotal 0.041** 0.047*** 0.038** 0.041** 0.069* 0.063

(0.016) (0.014) (0.016) (0.018) (0.040) (0.042)
R-squared 0.288 0.336 0.249 0.274 0.324 0.347
N 114 114 104 104 76 76

Dep.
Var.

All-industry
sample

Manufacturing/
Service sample

Manufacturing
sample

SK1

SK2

 
Notes: “Dep. Var.” denotes the dependent variable. Figures are WLS estimates with weight = 
employment share of each industry averaged over the two periods. In columns (1), (3), and (5), 
year 2009 and industry dummies are controlled for. In columns (2), (4), and (6), Import, Export, 
and Smallfirm are additionally controlled for. Robust standard errors clustered by industry are in 
parentheses. ***p < 0.01, **p < 0.05, *p < 0.1  
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Table B.3. Concordance Table on Industry Classification 
(a) 57-Industry Classification (1999 and 2009) 

No. Sector Industry Name 

1999 2009 1999/2009 1999/2009 
1998–
1999 

(1993–
1994) IO 

code 

2007–
2008 IO 

code 

WIOD 
code 

NIC-1998 codes in 1999–2000 
NSS 

< NIC-2004 code in 2009-2010 
NSS >* 

1 P Agriculture 1-17, 19, 
20 

1-20, 
22-24 

C1 

01, 852 
< 01 (excl. 01136), 852 > 

2 P Forestry/logging 21 25 02 
< 02, 01136 > 

3 P Fishing 22 26 05, 1512 
4 P Coal/lignite mining 23 27 

C2 
10 

5 P Other mining 24-32 28-37 11-14 
< 11-14, 402 > 

6 M Dairy products 18 21 

C3 

152 
7 M Sugar 33, 34 38, 39 1542 

8 M Other food products 35-38 40-43 151 (excl. 1512), 153, 154 
(excl. 1542) 

9 M Beverage/Tobacco 39, 40 44, 45 155, 16 

10 M Cotton/woolen textile 41-43 46-48 

C4 

17111, 17113, 17115, 17117, 
17121, 17123 

< 17111, 17113, 17115, 
17117, 17121, 17123, 

17131-17133, 17139, 17141, 
17142, 17149, 17126, 17129, 

17134-17136, 17143 > 

11 M Silk textile 44 49 
17112, 17116, 17122  

< 17112, 17116, 17122, 17144 
> 

12 M Man-made fiber textiles 45 50 
17114, 17118, 17124 

< 17114, 17118, 17124, 
17137, 17145 > 

13 M Jute textile etc. 46 51 17119, 17125 

14 M Other textile products 47, 49 52, 54 

1722, 1723, 1729, 173 
< 1722, 1723, 1729, 173, 

17252-17255, 1724, 17251, 
17259 > 

15 M Wearing apparel 48 53 1721, 1810 

16 M Leather and its products 
(excl. footwear) 55 60 

C5 
1820, 191 

17 M Leather footwear 54 59 19201, 52601 
< 19201, 19209, 52601 > 

18 M Wooden furniture 50 55 C6 36101 
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19 M Wood and its products 
(excl. furniture) 51 56 20 

20 M Paper and its products 52 57 
C7 

21 
21 M Publishing/printing 53 58 22 

22 M Refined petroleum/Coke 
products 58, 59 63, 64 C8 23 

23 M Basic chemicals 60, 61 65, 66 

C9 

2411 (excl. 24113, 24114, 
24115) 

24 M Fertilizer 62 67 2412 
25 M Pharmaceuticals 65 70 2423 

26 M Other chemicals 63, 64, 
66-68 

68, 69, 
71-73 

242 (excl. 2423), 2413, 
24113-24115, 243 

27 M Rubber products 56 61 
C10 

251, 19202 
28 M Plastic products 57 62 252, 36103 

29 M Structural clay/ceramic 
products 69 74 

C11 

2692, 2693 

30 M Cement 70 75 26941, 26942 

31 M Other non-metallic mineral 
products 71 76 

261, 2691, 26943, 26944, 
26945, 2695, 2696, 2699 

< 261, 2691, 26943, 26944, 
26945, 26949, 2695, 2696, 

2699 > 
32 M Basic iron/steel 72 77 

C12 

271 
33 M Basic non-ferrous metals 73,75 78, 80 272, 273 

34 M Hand tools/General 
hardware 76 81 2893 (excl. 28931) 

35 M Other metal products 74, 77 79, 82 281, 2891, 2892, 28931, 2899, 
36102 

36 M 
General/Special 
purpose/office/other 
non-electrical machinery 

78-83 83-87 C13 

291, 292, 29301, 29302, 
29306, 29307, 29309, 30 

< 291, 292, 29301, 29302, 
29306, 29307, 29309 > 

37 M Wire/cable etc. 85,86 89, 90 

C14 

313, 314 

38 M Electrical appliances 87 91 315, 29303-29305, 29308, 
52602 

39 M Electric motors etc. 84,89 88, 93 311, 312, 319 

40 M Radio/TV/Communication 
equipment 88, 90 92, 94 32, 52603 

41 M Transport equipment 
(Motor vehicle etc.) 91-94 95-98 

C15 
34, 351, 352, 3591 

42 M Other transport equipment 95,96 99, 100 3592, 52605, 3599 

43 M Other manufacturing 97,98 101-105 C16 

33, 37, 353, 369, 36104, 
36109, 52609, 52604 

< 33, 37, 353, 369, 36104, 
36109, 52609, 52604, 30 > 
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44 S Electricity 100 107 
C17 

401 

45 S Gas/Water  
(No Gas in 2009) 101,102 108 402, 403, 410 

< 403, 410 > 
46 S Construction 99 106 C18 45 

47 S Wholesale/Retail 107 116 C19, 20, 
21 50-52 (excl. 526) 

48 S Hotel/Restaurant 108 117 C22 55 
49 S Railway transport 103 109 C23 601 

50 S Other transport/storage 104,105 110-114 C24, 25, 
26 602, 603, 61-63 

51 S Post/Telecommunication 106 115 C27 64 
52 S Finance (banking etc.) 109 118 

C28 
65, 671 

53 S Insurance 110 119 66, 672 
54 S Education/Research 112 121 C32 73, 80 
55 S Medical and health services 113 122 C33 851 

56 S Other services 111,114 120, 
123-129 

C29, 30, 
34, 35 70-72, 74, 853, 90-93, 95, 99 

57 S Public 
administration/defense 115 130 C31 75 

Notes: P, M, and S in the column “sector” denote primary, manufacturing, and service sectors, 
respectively. NIC-2004 codes in the 2009–2010 NSS are reported in brackets < > only when the 
corresponding codes differ from the NIC-1998 codes. 
Sources: Created by author based on the industry descriptions of India's IO table, NIC-1998 and 
NIC-2004 classifications (Ministry of Statistics and Programme Implementation’s website32), 
and WIOD. 
 
 

(b) 54-Industry Classification (2009) 

No. Sector Industry Name 
1993–

1994 IO 
code 

2007–
2008 IO 

code 

WIOD 
code 

NIC-2004 code in 2009–2010 
NSS  

1 P Agriculture, Fishing 1-17, 19, 
20, 22 

1-20, 
22-24, 

26 C1 
01 (excl. 01136), 852, 05, 1512 

2 P Forestry 21 25  02, 01136 
3 P Coal/lignite mining 23 27 

C2 
10 

4 P Other mining 24-32 28-37 11-14, 402 

5 M Sugar, Dairy products 18, 33, 
34 

21, 38, 
39 

C3 

152, 1542 

6 M Other food products 35-38 40-43 151 (excl. 1512), 153, 154 
(excl. 1542) 

7 M Beverage/Tobacco 39, 40 44, 45 155, 16 

32 http://mospi.nic.in/Mospi_New/site/inner.aspx?status=2&menu_id=129 
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8 M Cotton textile 41, 42 46, 47 

C4 

17111, 17115, 17121, 
17131-17133, 17139, 17141, 
17142, 17149, 17126, 17129 

9 M Woolen, Silk, Jute etc. 
textile 

43, 44, 
46 

48, 49, 
51 

17113, 17117, 17123, 
17134-17136, 17143, 17112, 
17116, 17122, 17144, 17119, 

17125 

10 M Man-made fiber textiles 45 50 17114, 17118, 17124, 17137, 
17145 

11 M Other textile products 47, 49 52, 54 
1722, 1723, 1729, 173, 

17252-17255, 1724, 17251, 
17259 

12 M Wearing apparel 48 53 1721, 1810 

13 M Leather and its products 
(incl. footwear) 54, 55 59, 60 C5 1820, 191,  19201, 19209, 

52601 
14 M Wooden furniture 50 55 

C6 
36101 

15 M Wood (excl. furniture) 51 56 20 
16 M Paper and its products 52 57 

C7 
21 

17 M Publishing/printing 53 58 22 

18 M 
Refined Petroleum/Coke 
product, Basic chemicals, 
Fertilizer 

58-62, 
101 63-67 

C8, 9 

23, 2411 (excl. 24113-24115), 
2412 

19 M Pharmaceutical 65 70 2423 

20 M Other chemicals 63, 64, 
66-68 

68, 69, 
71-73 

242 (excl. 2423), 2413, 
24113-24115, 243 

21 M Rubber and Plastic 
products 56, 57 61, 62 C10 251, 19202, 252, 36103 

22 M Structural clay/ceramic 
products, Cement 69, 70 74, 75 

C11 

2692, 2693, 26941, 26942 

23 M Other non-metallic mineral 
products 71 76 

261, 2691, 26943, 26944, 
26945, 26949, 2695, 2696, 

2699 
24 M Basic iron/steel 72 77 

C12 

271 

25 M 
Basic non-ferrous metals, 
Hand tools/General 
hardware 

73, 75, 
76 

78, 80, 
81 272, 273, 2893 (excl. 28931) 

26 M Other metal products 74, 77 79, 82 281, 2891, 2892, 28931, 2899, 
36102 

27 M 
General/Special 
purpose/other 
non-electrical machinery 

78-81, 
83 83-87 C13  291, 292, 29301, 29302, 

29306, 29307, 29309 

28 M Electrical Appliance, 
Batteries 86, 87 90, 91 

C14 

314, 315, 29303-29305, 29308, 
52602 

29 M Electric motors etc. 84, 89 88, 93 311, 312, 319 

30 M 
Radio/TV/Communication 
equipment, Electrical 
cables and wires 

85, 88, 
90 

89, 92, 
94 313, 32, 52603 
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31 M Motor vehicle & Motor 
cycles and scooters 93, 94 97, 98 

C15 

34, 3591 

32 M Ships, boats, and Rail 
equipment 91, 92 95, 96 351, 352 

33 M Bicycles, cycle-rickshaw, 
Other transport equip. 95, 96 99, 100 3592, 52605, 3599 

34 M Gems and Jewelry 
82, 97, 

98 

103 

C16 

3691 

35 M Other manufacturing 
101, 
102, 

104, 105 

33, 37, 353, 369 (excl. 3691), 
36104, 36109, 52609, 52604, 

30 
36 S Electricity 100 107 

C17 
401 

37 S Gas, Water  
(No Gas in 2009) 102 108 403, 410  

38 S Construction 99 106 C18 45 

39 S Wholesale/Retail 107 116 C19, 20, 
21 50-52 (excl. 526) 

40 S Hotel/Restaurant 108 117 C22 55 
41 S Railway transport 103 109 

C23 
601 

42 S Land transport 

104, 105 

110 602, 603 
43 S Water and air transport 111, 112 C24, 25 61, 62 

44 S Auxiliary transport, storage 
and warehousing 113, 114 C26 63 

45 S Post/Telecommunication 106 115 C27 64 
46 S Finance (banking etc.) 109 118 

C28 
65, 671 

47 S Insurance 110 119 66, 672 
48 S Education/Research 112 121 C32 73, 80 
49 S Medical and health services 113 122 C33 851 
50 S Computer services 

111, 114 

124 C29, 30, 
35 

72 
51 S Business services 123 74 (excl. 7411) 

52 S Community, social, 
personal services 128 C34 853, 91, 93, 95 

53 S Other services 
120, 

125-127, 
129 

C29, 30, 
35 70, 71, 7411, 90, 92, 99 

54 S Public 
administration/defense 115 130 C31 75 

Notes: P, M, and S in the column “sector” denote primary, manufacturing, and service sectors, 
respectively.  
Sources: Created by author based on the industry descriptions in India's IO table and NIC-2004 
classifications. 
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Table B.4. Concordance Table on Occupation Classification 
(a) 11 Occupation Categories (Occ1–Occ11) in Appendix A (b) 

  Description NCO-1968 code  
in 1999–2000 NSS 

NCO-2004 code 
In 2009–2010 NSS 

Occ1 Professionals 00, 02, 05, 07, 10-19 (excl. 
192, 199) 

2 (excl. 223), 312, 313, 324, 
33, 347 

Occ2 Technicians, etc. 01, 03, 04, 06, 08, 09, 199, 
30, 572 

223, 3 (excl. 312, 313, 315, 
324, 33, 341, 343, 345, 347) 

Occ3 Government administrators 
and executive officials 20, 21 11 

Occ4 Managers 22-29, 360, 60 12-13 

Occ5 Clerical and related workers 3 (excl. 30, 357, 358, 360, 
370, 371) 4, 343 

Occ6 Sales workers 4 341, 522, 523, 911 

Occ7 Service workers 5 (excl. 541, 572), 192, 357, 
358, 370, 371 

5 (excl. 522, 523), 315, 345, 
912-915 

Occ8 Farmers, fishermen, hunters, 
loggers, and related workers 6 (excl. 60) 6, 92 

Occ9 

Production and related 
workers, transport equipment 
operators and laborers 
(supervisors and foremen) 

71-98 (excl. all 3-digit codes 
ending with zero (e.g. 710, 

720, …, 980)) 
7, 8, 916, 93 

Occ10 

Production and related 
workers, transport equipment 
operators and laborers (other 
than supervisors and foremen) 

7-9 (excl. those recorded as 
Occ9), 541 

Occ11 Not classified X X 
Sources: Created by author based on India’s NCO-1968 and NCO-2004 codes (Directorate 
General of Training, Ministry of Skill Development and Entrepreneurship, Government of India 
website33). 
 

33 http://dget.nic.in/content/innerpage/nco---20php 
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(b) Occupation Concordance Used when Constructing SK3 

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)
000 69 53 070 130 94
001 73 45 071 131 92, 96
002 75 51 072 132 96
003 74 43 073 133 167 93
009 69 53 074 85 62 134 164, 165 32, 33
010 075 86 72 135 169 96
011 076 96 64 136 27, 163 56, 174
012 077 97 74 137 174, 177 100, 954
014 078 208 85 139 169 96
015 079 88, 89 61, 71, 73 140 31
017 080 208 85 141 30
018 081 445 921 142 173
019 082 143
020 43 2 083 147
021 53 11 084 95 75 149

022 55 12 085 89 924 150 154
102-105, 110-
116, 120-126,
130-135, 140

023 57 14 086 206 83 151
024 48 10 087 87 63 152
025 45 15 088 99, 104, 105 76 153 156 142
026 47 20, 21 089 447 922, 925 154 155 143
027 56 13 090 155 158 145
028 218 161 091 156
029 59, 235 23, 173 092 157
030 217 152 093 158
031 162 094 159
032 153 095 160 183 181
033 155 099 161 195 184
034 151 100 35 162
035 101 36 163
036 102 34 169
037 218 161 103 64, 235, 229 3-5, 173 170 188 190
039 214 162 104 386 375 171 185 183, 425
040 163 105 172 195 184
041 107 173 189 191
042 109 177
043 221, 661, 701 110 179
044 173 111 180 186 185
045 113 181 193 182
049 114 182 175
050 78 44, 52 116 183 194
051 83 54 117 184
052 79 25 119 186
053 77 42 120 187
054 121 188
057 122 189
059 123 190 86
060 124 191 90
061 127 192 469 933
063 129 193 199 180
069

194

176

157 144

159 145

13, 194 192, 194

173

68

68 35, 36

166 91

447 922

208 85

194 194

23 1

169

178

234

166 91

84 65

187

194

223 150

224, 225 151, 162

214

162

226
170

829

226, 829 173, 221, 661,
701

76 54
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NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)
194 269 355 389 394, 395
195 290 356 318 390
199 291 357 471 394, 395
200 292 358 469 933, 945

201 293 359
347, 378, 384,

389
313, 344, 355,
362, 394, 395

202 294 360 22, 471 220, 245

206 295 361 22, 303
220, 224, 245,

312
209 296 362
210 299 363
211 300 364
212 301 366
214 302 368
217 303 369
213 304 370
219 305 371
220 306 372
221 307 374
222 309 375
223 310 377
224 311 379
225 312 380 355 331
227 315 381 357 333, 383
229 316 384
230 318 385
231 319 386
234 320 313 370-372, 376 389
239 321 390 348 385
240 322 391
241 323 385 345 392
242 324 396
243 328 398
244 329 399
245 330 337 305 400 274 281, 282, 285
246 331 276 310 401 275 284
248 336 402
249 337 403
250 338 404
251 339 405
252 340 407
253 341 409
255 342 410 243 281, 282
256 343 411 29, 33 205, 225
259 345 412
260 347 413
261 349 414
262 350 379 394, 395 415
263 351 365 381 417
264 352 319 364 419
267 353 329 330 420
268 354 338 360 421

471 220, 245

220, 245

311, 394, 395

235 173

22

303 312

389

4 222

22 220, 245

823 226, 704
22 220, 233, 245

7 202
346, 354-356 331, 332, 361

22 220, 245

276, 337, 383 310, 301, 305
274, 275

281, 282, 284,
285

349 384

313, 315, 385
345, 370-372,

376, 391
349 384, 385

315 391

281, 282, 284,
285

274, 275
281

308 343, 350
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NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)
422 530 901, 984 610
427 531 984 611
429 532 612
430 274, 275, 283 282-285, 262 533 613
431 277 264, 266 534 614
432 537 616
433 538 618
434 539 619
435 540 453 903 620
437 541 902 621
439 542 780, 785 622
440 253 265 543 623
441 254 270 544 624
442 255 271 547 625
443 256 260 549 626
444 274 261 550 630, 983 627
445 375 326, 363 551 628

449 253-256, 274
260, 261, 265,
270, 271, 363

552 629

450 554 630
451 556 631
452 556 632
453 559 633
454 560 635
455 561 636
457 562 637
459 569 639
490 570 417 961 640
491 571 418 964 641
493 572 36 215 643
494 573 645
499 574 649
500 575 650 779 690, 692
501 576 651 479 822-824
502 577 652 451 755
509 579 655
510 590 461 932, 933 657
511 591 469 211, 933 658
513 592 659
514 593 660
517 595 661
519 597 662
520 436 912, 981 599 663
521 405, 435 915 600 669
522 434 910 601 670
523 602 671
524 603 672
525 604 673
526 605 676
528 609 678
529 679

822-824

408, 764

405

274, 275 282-285

901, 931, 940,
950

274, 275
281, 282, 284,

285

405

473 801

780, 785, 902

611, 630, 983

457, 458 935, 944

255 285

479

426 962

22 230, 245 427 960-965

274, 275 281-285

405, 462, 469 933, 941, 953
496 450, 761

405 940, 950, 982

479 822-824

498 752
434-436

475 802, 821
910, 915, 912,

981
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NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)
680 753 807
681 754 808
682 755 809
683 756 810 628 441
684 757 671 811 567 415
686 758 743 674 812 657 413

687 759 799 610 813 729, 733
690, 692, 694,

695
688 760 628 441 814
689 761 815
710 628 441 762 816
711 764 817
712 769 819
713 598 614 770 628 441 820 628 441
714 615 603 771 501 821
715 616, 617 640 772 822
716 773 823
717 774 686 631, 633 824
718 775 754 604, 643 825

719 776 769
690, 692, 694,

695
827

720 628 441 777 687, 763 402 828
721 766 622 778 763 575 829

722 707 533 779 754, 769
501, 604, 612,

643
830 628 441

723 766 622 780 628 441 831
724 781 832
725 782 833
726 724 446, 626 783 834
727 755 503 784 835 703 652, 653
728 723 635 785 836 709 621, 651
729 653 575 786 837
730 628 441 787 838
731 658, 766 443 788 839
732 727 662 789 840 503 441
733 790 628 441 841 535 492, 495
734 791 666 551, 613 842 549, 785 492, 495, 602
735 792 444 843 505, 785 473, 602
737 793 636 844 508, 785 471, 602

739 794 645, 185 183, 425, 514 845
507, 509, 516,
518, 526, 534,

544, 549

480-482, 470.
492, 495, 502

740 628 441 795 744 663 847
741 756 641 796 668 563 848
742 724 446 797 849
743 757 798 850 503 441
744 799 851 575 430
745 800 628 441 852 533 492, 495
747 801 669 542 853 523, 785 492, 495, 602
749 802 669, 745 542, 664 854 523 485
750 628 441 803 855 575 430
751 749 670, 674 804 856 552
752 738 672, 681 805 857 554

616 640
669 444

658

498 752

739
673

617 640

614 614

769

719 503

763, 779
690, 692, 694,

695

549, 713

634

779
690, 692, 694,

695
669

779
690, 692, 694,

695

766, 779 622, 666, 690,
692, 694, 695

690, 692, 694,
695779

669

575
749 674

669 575

669

527

551, 663

549, 785 492, 495, 602

403, 442

561

690, 692, 694,
695

675 546

443
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Notes: Cells highlighted in gray 
are those not listed in India’s 
NCO-1968 classification but 
appearing in the 1999–2000 NSS 
data. I assign the occ1990dd and 
1970 U.S. Census codes of the 
neighboring cell to those codes.  
 
Sources: Created by author 
based on the occupation 
descriptions of India's 
NCO-1968 code, occ1990dd 
code in Autor and Dorn (2013) 
and Dorn (2009), and 1970 U.S. 
census codes. 

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)

NCO-1968
code in

1999–2000
NSS

occ1990dd
code used in

Autor and
Dorn (2013)

1970 U.S.
census code

used in
Yamaguchi

(2012)
859 523, 533 492, 495 925 435 977
860 228, 467 171, 505 926 515 978
861 228 171 927 679 405 979
862 928 774 645 980 803 441

864 929 734
690, 692, 694,

695
981

869 930 628 441 982
870 628 441 931 579 510 983 823 704
871 585 522 932 543 984 824 456
872 783 680 933 985 825 712, 713

873 653 535 935 986
804, 808, 809,

834
703, 710, 714,

715
874 597 550 936 987 804 763
878 937 988 780, 785
879 938 989 712, 713
880 628 441 939 990
881 535 453 940 628 441 991
882 535, 649 435, 453 941 535 516 992
883 649 435 942 658 443 993
884 943 753, 779 575 994
887 944 995
889 945 996
890 628 441 946 997
891 589, 677 445, 506 947 998
892 675 575 949 999
893 766 622 950 558 441
894 649 435 951 563, 594 410, 560
895 789 644 952 588 421
896 953 595 534
898 954 599 440
899 955 584 520
900 628 441 956 593 601
901 734, 755, 779 957 589 445
902 719, 779 958 595 534
903 719, 755, 779 959 583, 599 512, 751
906 960 628 441
907 961 545
908 962 666
909 963 519, 887 642, 764
910 628 441 964
911 966
912 968
914 969
915 970 628 441
919 971 889 753
920 628 441 972 527 554
921 973 848 424
922 974 594, 844, 853 412, 436
923 530 975 368 392, 610
924 434 976 888 625

228, 467 171, 505

765
690, 692, 694,

695

779

690, 692, 694,
695

756, 779, 799 610, 624, 641

889 780, 785

734

694, 696

736 422

545

696

804, 834 763

535, 649 435, 453

789

649

653 522, 535, 550,
680

834

684, 779
575, 690, 692,

694, 695

829 661, 701

644

Notes: Cells highlighted in gray 
are those not listed in India’s 
NCO-1968 classification but 
appearing in the 1999–2000 NSS 
data. I assign the occ1990dd and 
1970 U.S. Census codes of the 
neighboring cell to those codes.  
 
Sources: Created by author 
based on the occupation 
descriptions of India's 
NCO-1968 code, occ1990dd 
code in Autor and Dorn (2013) 
and Dorn (2009), and 1970 U.S. 
census codes. 
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