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A Unified Framework of Trade in Value Added: Physical,
Monetary, Exchange Rates, and GHG Emissions∗

Asao ANDO†and Bo MENG‡

February 22, 2016

Abstract

Koopman et al. (2014) developed a method to consistently decompose gross exports
in value-added terms that accommodate infinite repercussions of international and inter-
sector transactions. This provides a better understanding of trade in value added in global
value chains than does the conventional gross exports method, which is affected by double-
counting problems. However, the new framework is based on monetary input–output (IO)
tables and cannot distinguish prices from quantities; thus, it is unable to consider finan-
cial adjustments through the exchange market. In this paper, we propose a framework
based on a physical IO system, characterized by its linear programming equivalent that
can clarify the various complexities relevant to the existing indicators and is proved to
be consistent with Koopman’s results when the physical decompositions are evaluated
in monetary terms. While international monetary tables are typically described in cur-
rent U.S. dollars, the physical framework can elucidate the impact of price adjustments
through the exchange market. An iterative procedure to calculate the exchange rates is
proposed, and some numerical exercises with hypothetical data are conducted to demon-
strate the significance of local wages and capital flows, which are exogenous to the IO
system. The physical framework is also convenient for considering indicators associated
with greenhouse gas (GHG) emissions.

1 Introduction

The rise of global value chains (GVCs) during the last two decades has significantly changed
the nature and structure of international trade, with many new implications for policymaking
(Baldwin and Robert-Nicoud, 2014; Timmer et al., 2013). One of the most important features
of GVCs is the transition of the trade pattern from “trade in goods” to “trade in tasks” (see
Grossman and Rossi-Hansberg, 2008) in global production networks. This phenomenon has
also been described as “the second great unbundling” (see Baldwin, 2012). The theoretical
background is that the reduction of communication costs due to the IT revolution has enabled
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the international unbundling of factories and offices, which means that tasks can also be traded
globally. In other words, countries no longer have to build or host the entire production chain;
through the fragmentation of production, they can develop or attract productive capacity in a
link of the chain where their comparative advantages fit the best. As a result, more and more
intermediate goods, such as parts and components, are produced in sequential substages in
different countries and then exported to other countries for use in further production. This, in
turn, has significantly increased the complexity and sophistication of international production
networks, bringing many new challenges in terms of how to better understand the creation,
transfer and distribution of value added, income and job opportunities in GVCs.

Policy-makers require well-conceptualized indicators that can reveal the degree and nature
of the interaction of their country with its major economic partners, the degree of GVC partic-
ipation, and the location of their country in GVCs (see OECD-WTO-UNCTAD, 2013). Along
these lines, many new indictors and measures based on input–output (IO) data have been pro-
posed. Hummels et al. (2001) used the “import content of exports” indicator to measure a
country’s participation level in vertically specialized trade. Johnson and Noguera (2012) pro-
posed the “trade in value added” (TiVA) indictor to measure how a country’s value added is
directly and indirectly absorbed by other countries’ final demands through GVCs. Antràs et al.
(2012) developed the concept of “distance,” which is the number of stages that a product goes
through before reaching the final demand, to measure the position of a country or industry in
GVCs. Timmer et al. (2013) presented a new indicator for measuring the level of fragmen-
tation of production. Koopman et al. (2014) developed a method to consistently decompose
gross exports in value added terms, which provides a better understanding of value-added trade
in GVCs as compared to the conventional gross exports, which is affected by double-counting
problems. Wang et al. (2014) further extended the work of Koopman et al. to consistently
measure value-added trade at bilateral and industrial levels.

However, the above efforts in developing the measurement of GVCs are all based on monetary
IO tables, which cannot distinguish prices from quantities and are thus unable to consider
financial adjustments through the exchange market. In this paper, we propose a more general
framework based on a physical IO system to clarify the various complexities relevant to the
existing IO-based GVCs indicators. Since the international monetary IO tables are generally
described in current U.S. dollars, the physical framework can elucidate the impact of price
adjustments through the exchange market. An iterative procedure to calculate the exchange
rates is also proposed, and some numerical exercises with hypothetical data are conducted to
demonstrate the significance of local wages and capital flows, which are exogenous to the IO
system. The physical framework proposed is also convenient for considering the indicators
associated with greenhouse gas (GHG) emissions.

In the following, after reviewing the linear programming problem of the one-country physical
IO system, the problem for a world comprising two countries is formulated. With the physical
system, it is easy to calculate the contributions of individual sectors and countries to each
commodity price after considering the infinite number of repercussions of intermediate trade.
Once such contributions are evaluated, it is easy to decompose the GDP of each country, which
is the sum of values added. In section 4, the system is generalized to include n sectors and m
countries. In section 5, the correspondence between physical and monetary systems is discussed
to show that our results are essentially the same as the ones of Koopman et al. Returning to the
physical system, the iterative process to endogenize the exchange rates is discussed in section 6.
However, it presupposes the existence of outside systems to determine wage levels and capital
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flows, such as the labor and international financial markets. Greenhouse gases can also be
incorporated in the commodities traded. A similar approach can then be used to determine
who is ultimately responsible for emissions after taking into account all repercussions, which is
the subject to be discussed in sections 7 and 8.

2 One-country physical table

The linear programming problem proposed by Dorfman et al. (1958) is convenient to formalize
the physical IO system, and it might be beneficial to review the single country case as a starting
point. The problem is to find the output schedule x that minimizes the labor cost needed to
satisfy the final demand requirement y:

min
x

{wa0x|(I − A)x ≥ y, x ≥ 0}, (1)

where w, a0, and A, respectively, are the prevailing wage, labor (value added) input coefficient
vector, and input coefficient matrix.

The Lagrangian function for the problem can be written using a row vector of multipliers p
as

L = wa0x+ p(y − (I − A)x). (2)

Then one of the first-order conditions is

∂L

∂x
= wa0 − p(I − A) ≥ 0, (3)

where p can be interpreted as the price vector.
When p is positive, then the usual output equation is obtained as the optimal solution, viz.,

x = (I−A)−1y. Conversely, when the output vector x is positive, the row vector of commodity
prices can be determined:

p = wa0(I − A)−1, (4)

which is positive when the wage is positive, the labor inputs are non-negative but non-zero,
and the Leontief inverse is positive definite.

Equation (4) can be decomposed as the sum of an infinite geometric series,

p = wa0 + wa0A+ wa0A
2 + wa0A

3 + · · · .

The first term represents the direct labor cost included in the product price while the second
term represents the first-round repercussion as intermediate inputs to another commodity, and
so forth.

When bij denotes the (i, j) element of the Leontief inverse, the price of commodity i can be
written as a weighted sum of the labor costs in all the sectors: pi = w

∑
j a0jbji. Then the

portion of the price of commodity i attributable to commodity j as an intermediate input can
be calculated as

cji =
waojbji

pi
. (5)
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3 Two-country physical table

A similar analysis applies to the case when commodity price composition in terms of origins of
intermediate inputs is considered. In this case, country 1’s problem is to minimize the costs of
labor and imported intermediate inputs required to produce the domestic outputs,

min
x1

{(w1a10 + p2A21)x1|(I − A11)x1 − A12x2 ≥ y11 + y12, x1 ≥ 0}, (6)

and the problem of country 2 would be

min
x2

{(w2a20 + p1A12)x2| − A21x1 + (I − A22)x2 ≥ y21 + y22, x2 ≥ 0}, (6′)

where the superscripts 1 and 2 indicate the respective countries, yrs represents the amounts of
country r’s products consumed as the final demand in country s, and Ars denotes the submatrix
of interregional input coefficient matrix. Each country regards the price of imports ps as well
as the domestic wage wr as being exogenous.

As each country regards the outputs of the other country as being exogenous, the problem
can be described as a Nash problem, and x1 and x2 at the equilibrium are determined by solving
(6) and (6’) simultaneously. The same output schedule can be obtained from the world problem
combining both countries.

minx1,x2 w1a10x
1 + w2a20x

2,

s.t. (I − A11)x1 − A12x2 ≥ y11 + y12,

−A21x1 + (I − A22)x2 ≥ y21 + y22,

x1 ≥ 0, and x2 ≥ 0, (7)

and the Lagrangian function for the problem can be written with the multipliers p1 and p2 for
the respective countries:

L = w1a10x
1+w2a20x

2+p1(y11+y12−(I−A11)x1+A12x2)+p2(y21+y22+A21x1−(I−A22)x2). (8)

Two of the first-order conditions are

∂L

∂x1
= w1a10 − p1(I − A11) + p2A21 ≥ 0

∂L

∂x2
= w2a20 + p1A12 − p2(I − A22) ≥ 0 (9)

If the output vectors are positive, then the price vectors can be found in matrix form:

(p1 p2) = (w1a10 w2a20)

(
I − A11 −A12

−A21 I − A22

)−1

= (w1a10 w2a20)

(
B11 B12

B21 B22

)
(10)

Denoting the transaction between sectors i and j in the submatrix Brs by brsij , the price of
commodity i produced in country 1 can be decomposed as

p1i = w1
∑
j

a10jb
11
ji + w2

∑
j

a20jb
21
ji . (11)
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Then, in the two-country framework, the portion of the prices of country 1’s product that is
attributed to value added originating in countries 1 and 2 can easily be calculated:

c11i =
w1∑

j a
1
0jb

11
ji

p1i
and c21i =

w2∑
j a

2
0jb

21
ji

p1i
.

Note that these expressions can directly be extended to the multi-country case. Since the values
added can be attributed to each industry in each region, the portions of commodity i’s price
produced in country s that is attributable to industry j in country r, and their aggregation by
the originating country can be written, respectively, as

crsji =
wrar0jb

rs
ji

psi
and crsi =

wr∑
j a

r
0jb

rs
ji

psi
(12)

4 Decomposition of GDPs

By definition, the GDP of country 1 is given by

Y 1 = p1y11 + p2y21 + p1(y12 + A12x2)− p2(y21 + A21x1)

=
∑
i

p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

p2i
∑
j

a21ij x
1
j , (13)

where the first line represents the final demand for the domestic product p1y11 plus the exports
minus the imports. The exports and imports include both final and intermediate demands, and
are evaluated using the prices of their origin. Likewise the GDP of country 2 can be written as

Y 2 = p2y22 + p1y12 + p2(y21 + A21x1)− p1(y12 + A12x2)

=
∑
i

p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

p1i
∑
j

a12ij x
2
j .

By using the portions crsi defined in (12), these GDPs can be decomposed into the contri-
butions of the respective countries, taking into account all the repercussions of intermediate
transactions. That is, Y 1 = Y 11 + Y 21 and Y 2 = Y 22 + Y 12, where Y rs represents the part of
country s’s GDP that is eventually attributable to country r.

Y 11 =
∑
i

c11i p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

(1− c12i )p2i
∑
j

a21ij x
1
j ,

Y 21 =
∑
i

c21i p1i (y
11
i + y12i +

∑
j

a12ij x
2
j)−

∑
i

c12i p2i
∑
j

a21ij x
1
j ,

Y 22 =
∑
i

c22i p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

(1− c21i )p1i
∑
j

a12ij x
2
j ,

Y 12 =
∑
i

c12i p2i (y
22
i + y21i +

∑
j

a21ij x
1
j)−

∑
i

c21i p1i
∑
j

a12ij x
2
j . (14)

The second terms in the right hand sides of the above represent the imports. In the case of Y 11,
only the share c22 is subtracted because the remainder, c12, is the portion of prices attributable
to the economy of country 1, which does not need to be subtracted. Likewise, the second term
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of Y 21 subtracts country 1’s contribution from the imports from country 2, since that part must
be attributed to country 1 rather than country 2.1

Suppose there are i, j = 1, . . . , n commodities and r, s = 1, . . . ,m countries, and that ps

denotes the (1 × n) vector of FOB prices in country s. Further, introduce a diagonal ma-
trix Crs comprising {crs1 , . . . , crsn } obtained in (12). Then the general formulae of the GDP
decompositions can be written as

Y ss = psCss(
∑
r

ysr +
∑
r ̸=s

Asrxr)−
∑
r ̸=s

pr(In − Csr)Arsxs

Y rs = psCrs(
∑
r

ysr +
∑
r ̸=s

Asrxr)− prCsrArsxs, (r ̸= s). (15)

It is difficult to describe (15) in a simple matrix expression. For example, when there are three
countries, the representation below provides one such expression. Y 11 Y 12 Y 13

Y 21 Y 22 Y 23

Y 31 Y 32 Y 33


= P 0

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 ∑
r y

1r +
∑

r ̸=1 A
1rxr 0 0

0
∑

r y
2r +

∑
r ̸=2 A

2rxr 0

0 0
∑

r y
3r +

∑
r ̸=3 A

3rxr


−

 0 p2(I − C12) p3(I − C13)
0 p2C12 0
0 0 p3C13

 0 0 0
A21x1 0 0
A31x1 0 0

−

 p1C21 0 0
p1(I − C21) 0 p3(I − C23)

0 0 p3C23

 0 A12x2 0
0 0 0
0 A32x2 0


−

 p1C31 0 0
0 p2C32 0

p1(I − C31) p2(I − C32) 0

 0 0 A13x3

0 0 A23x3

0 0 0

 , (16)

where P 0 denotes the (3× 3n) matrix of price vectors, viz., P 0 =

 p1 0 0
0 p2 0
0 0 p3

 .

Using the commodity-based coefficients crsji in (12), the decomposition (15) may be rewritten
at the commodity level as

Y ss
ji = psi c

ss
ji (
∑
r

ysri +
∑
r ̸=s

∑
j′

asrij′x
r
j′)−

∑
r ̸=s

pr(1− csrji )
∑
j′

arsij′x
s
j′ ,

Y rs
ji = psi c

rs
ji (
∑
r

ysri +
∑
r ̸=s

∑
j′

asrij′x
r
j′)− pri c

sr
ji

∑
j′

arsij′x
s
j′ , (r ̸= s), (17)

where Y rs
ji is the part of the income of country s arising from producing commodity i that is

eventually attributable to sector j in country r.

5 The monetary representation

Koopman et al. (2014) demonstrated a similar measure that evaluates the value added at-
tributable to each country after all the repercussions of trade. Since their results are derived

1It can readily be seen Y 1 = Y 11 + Y 21, since c11 + c21 = 1 and c22 + c12 = 1 by definition.
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from the monetary table, it is important to confirm that our results are consistent with theirs
when our formulas are transformed into monetary terms.

The relationship between the physical and monetary inter-regional input coefficients, arsij and
αrs
ij , can be established:

αrs
ij =

prix
rs
ij

psjX
s
j

=
pri
psj
arsij . (18)

Similarly, with the physical primary input Ls
j , the relationship for the value-added input coef-

ficients, as0j and αs
0j, results in

αs
0j =

wsLs
j

psjX
s
j

=
ws

psj
as0j. (19)

For simplicity, let us consider a two-country, two-commodity monetary table as shown in
Table 1. By using the physical and monetary input coefficients, the output equation for the
first line of the table can be written as

p11X
1
1 = p11a

11
11X

1
1 + p11a

11
12X

1
2 + p11a

12
11X

2
1 + p11a

12
12X

2
2 + p11y

11
1 + p11y

12
1

= p11α
11
11X

1
1 + p12α

11
12X

1
2 + p21α

12
11X

2
1 + p22α

12
12X

2
2 + p11y

11
1 + p11y

12
1

= α11
11X̂

1
1 + α11

12X̂
1
2 + α12

11X̂
2
1 + α12

12X̂
2
2 + ŷ111 + ŷ121 = X̂1

1 ,

where X̂r
i = priX

r
i and ŷrsi = priy

rs
i represent the monetary values of Xr

i and yrsi , respectively.

Table 1: Framework for a two-country, two-commodity monetary table.

Country 1 Country 2 Final demand

Country 1 p11x
11
11 p11x

11
12 p11x

12
11 p11x

12
12 p11y

11
1 + p11y

12
1

p12x
11
21 p12x

11
22 p12x

12
21 p12x

12
22 p12y

11
2 + p12y

12
2

Country 2 p21x
21
11 p21x

21
12 p21x

22
11 p21x

22
12 p21y

21
1 + p21y

22
1

p22x
21
21 p22x

21
22 p22x

22
21 p22x

22
22 p22y

21
2 + p22y

22
2

Values added w1a101X
1
1 w1a102X

1
2 w2a201X

2
1 w2a202X

2
2

Denoting the 4× 4 matrix of inter-regional monetary input coefficients by Â, the system of
output equations in the above table can be summarized as

ÂX̂ + ŷ = X̂, (20)

where X̂ and ŷ are the column vectors of monetary outputs and final demands, respectively. To
clarify the relationship between monetary and physical expressions, it is necessary to establish
the relationship between Leontief inverse matrices in monetary and physical terms. In the
two-country and two-commodity setting, the monetary inverse can be transformed as follows:

(I − Â)−1 =


β11
11 β11

12 β12
11 β12

12

β11
21 β11

22 β12
21 β12

22

β21
11 β21

12 β22
11 β22

12

β21
21 β21

22 β22
21 β22

21

 =


1− α11

11 −α11
12 −α12

11 −α12
12

−α11
21 1− α11

22 −α12
21 −α12

22

−α21
11 −α21

12 1− α22
11 −α22

12

−α21
21 −α21

22 −α22
21 1− α22

21


−1
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=



1− p11
p11
a1111 −p11

p12
a1112 −p11

p21
a1211 −p11

p22
a1212

−p12
p11
a1121 1− p12

p12
a1122 −p12

p21
a1221 −p12

p22
a1222

−p21
p11
a2111 −p21

p12
a2112 1− p21

p21
a2211 −p21

p22
a2212

−p22
p11
a2121 −p22

p12
a2122 −p12

p21
a2221 1− p22

p22
a2221



−1

=




p11 0 0 0
0 p12 0 0
0 0 p21 0
0 0 0 p22




1− a1111 −a1112 −a1211 −a1212
−a1121 1− a1122 −a1221 −a1222
−a2111 −a2112 1− a2211 −a2212
−a2121 −a2122 −a2221 1− a2221




1
p11

0 0 0

0 1
p12

0 0

0 0 1
p21

0

0 0 0 1
p22




−1

=
(
P (I −A)P−1

)−1
= P (I −A)−1P−1 = P


b1111 b1112 b1211 b1212
b1121 b1122 b1221 b1222
b2111 b2112 b2211 b2212
b2121 b2122 b2221 b2221

P−1, (21)

where P denotes the 2× 2 diagonal matrix of prices.
Reciprocally, the physical inverse matrix B can also be written in terms of monetary inverse

matrix B̂:2

B = (I − A)−1 = P−1(I − Â)−1P = P−1B̂P. (21)′

Accordingly, the expressions in (12) can easily be rewritten using monetary coefficients:

crsji =
wrar0jb

rs
ji

psi
=

wr

psi
(
prj
wr

)αr
0j(

psi
prj
)βrs

ji = αr
0jβ

rs
ji and crsi =

∑
j

αr
0jβ

rs
ji . (22)

Then the GDP decompositions may be calculated by plugging these coefficients into (17).
While Koopman et al. (2014) illustrates the case with single commodity, their approach can

easily be extended to the case with multiple commodities. The domestic value-added coefficient
vsj for sector j corresponds to αs

0j in our notation. Recalling that an element of the monetary
Leontief inverse is denoted by βrs

ij , their country shares of values added are calculated for the
two commodity case as follows:

v11 0 0 0
0 v12 0 0
0 0 v21 0
0 0 0 v22




β11
11 β11

12 β12
11 β12

12

β11
21 β11

22 β12
21 β12

22

β21
11 β21

12 β22
11 β22

12

β21
21 β21

22 β22
21 β22

22

 =


α1
01β

11
11 α1

01β
11
12 α1

01β
12
11 α1

01β
12
12

α1
02β

11
21 α1

02β
11
22 α1

02β
12
21 α1

02β
12
22

α2
01β

21
11 α2

01β
21
12 α2

01β
22
11 α2

01β
22
12

α2
02β

21
21 α2

02β
21
22 α2

02β
22
21 α2

02β
22
22

 (23)

Let p̂sj denote the dual variable for the monetary system. Then by definition, it will be unity,
and is calculated as follows:

p̂sj =
∑
i

∑
r

αr
0iβ

rs
ij = 1.

Hence, the column sums of (23) must be equal to one, and each element represents the share
of the value added eventually attributable to the relevant sector and country.

2Considering that X̂ = PX and ŷ = Py, the monetary output equation (20) can be written as

P (I −A)−1P−1Py = P (I −A)−1y = PX.

By pre-multiplying P−1, this becomes equivalent to its physical counterpart.
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6 Exchange rate

Returning to the physical system, it is possible to calculate the effective exchange rate from the
balance of payments. If there are m countries, one currency must be regarded as the numéraire,
and other currencies are valued relative to it. In the two country case, it is reasonable to regard
the currency of country 1 as the numéraire, and let µ denote the exchange rate for country 2.
Then the price equations for each country can be written as

p1A11 + µp2A21 + w1a10 = p1,

p1A12 + µp2A22 + µw2a20 = µp2. (24)

By limiting the number of sectors to 2, for simplicity, the trade balance of country 1 can be
written as

p11a
12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2

− µ(p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2 ) = 0.

If there is no income transfer or capital flow between the two countries, the exchange rate µ is
determined solely from the above. However, this is unlikely so a net capital flow F into country
1 is introduced, and the equation is modified to include F :3

p11a
12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2 + F

− µ(p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2 ) = 0. (25)

In a world with only two countries, the balance of payments for country 2, where the capital
flow is given by −µF , brings no additional information. Then the exchange rate can directly
be calculated from (25):

µ =
p11a

12
11x

2
1 + p12a

12
21x

2
1 + p11a

12
12x

2
2 + p12a

12
22x

2
2 + p11y

12
1 + p12y

12
2 + F

p21a
21
11x

1
1 + p22a

21
21x

1
1 + p21a

21
12x

1
2 + p22a

21
22x

1
2 + p21y

21
1 + p22y

21
2

. (26)

In the present framework, where the final demands in physical units are given exogenously,
the physical outputs can be determined independent of the price system. Thus the solution to
the problem (7) can readily be found:(

x1

x2

)
=

(
I − A11 −A12

−A21 I − A22

)−1 (
y11 + y12

y21 + y22

)
. (27)

However, monetary variables wr and pri are to be determined through an iterative process. When
wages (w1, w2) are appropriately given, the corresponding price vectors (p1, p2) are calculated
by (10). Then, given capital flow F , the initial exchange rate µ̃(0) is determined by (26). While
the wages must be evaluated in the local currency, our initial setup is denominated in the
common currency. Hence, the wage in country 2 must be revised to reflect the provisional
exchange rate µ = µ̃(0), in step k = 1. Thus

(p1 p2) = (w1a10 µw2a20)

(
I − A11 −A12

−A21 I − A22

)−1

=

(
w1a10B

11 w1a10B
12

µw2a20B
21 µw2a20B

22

)
.

3To be exact, the balance of payments is obtained as the sum of trade balance, income transfer, and capital
flows. Here the sum of the latter two is simply called “capital flow”.
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When these revised price vectors are plugged into (26), the incremental exchange rate µ̃(k) is
obtained. Convergence is reached when |µ̃(k) − 1| < ϵ is satisfied with sufficiently small ϵ > 0.
Otherwise, the above process must be repeated with the exchange rate µ =

∏k
i=0 µ̃

(i) in step
k+1. If the process converged at step ℓ, the exchange rate and corresponding country 2’s wage
in the local currency are, respectively, given by

µ =
ℓ∏

k=1

µ̃(i) and ŵ2 = µw2.

When there are m > 2 countries, m − 1 independent exchange rates are determined. The
balance of payments for country r can then be written as

µr
∑
i

pri
∑
s ̸=r

(
∑
j

arsij x
s
j + yrsi ) =

∑
s ̸=r

µs
∑
i

psi (
∑
j

asrij x
r
j + ysri ) (28)

By letting µ1 = 1, the rest of exchange rates µr(r = 2, . . . ,m) can be found using a similar
iterative process to the one described above. In any case, it must be emphasized that the
exchange rates depend crucially on how the wage levels in individual countries and capital
flows among them are specified.

7 GHG emissions

Consider a world of two countries where GHG emissions are not priced. The output system
can be written in exactly the same way as the constraints in problem (7):

(I − A11)x1 − A12x2 = y11 + y12,

−A21x1 + (I − A22)x2 = y21 + y22.

Let arg be the unit emission vector from production activities, and erg be the same from con-
sumption of final products in country r.4 Then the emission in each country is calculated as
follows:5

g1 = a1gx
1 + e1g(y

11 + y21) and g2 = a2gx
2 + e2g(y

12 + y22).

Since the Leontief inverse represents the infinite repercussions of inter-sector and international
transactions, it is straightforward to assess the impact of each final demand segment on the
GHG emissions of each country:(

g1

g2

)
=

(
a1g 0
0 a2g

)(
x1

x2

)
+

(
e1g e1g
0 0

)(
y11

y21

)
+

(
0 0
e2g e2g

)(
y12

y22

)

=

(
a1gB

11 + e1g a1gB
12 + e1g

a2gB
21 a2gB

22

)(
y11

y21

)
+

(
a1gB

11 a1gB
12

a2gB
21 + e2g a2gB

22 + e2g

)(
y12

y22

)
.(29)

4The seminal article by Leontief (1970) considers pollutants from only production sectors. However, GHG
emissions from the final demand sectors cannot be ignored.

5When only one gas is being considered, arg becomes a row vector of size n, but the method can easily be
extended to cover k kinds of gas; in that case, arg becomes a k× n matrix. Moreover, the same formulation can
also be applied to water resources. In that case, arg and erg are interpreted as the unit water demand associated
with the production process, and with the final demand consumption, respectively.
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Each country is responsible for the emissions accrued from its final demand. For example,
country 1’s emission g1 can be decomposed into two parts, g11 and g12, for which countries 1
and 2, respectively, are responsible.

g11 = (a1gB
11 + e1g)y

11 + (a1gB
12 + e1g)y

21 and g12 = a1gB
11y12 + a1gB

12y22.

Likewise, country 2’s emission g2 can also be decomposed:

g21 = a2gB
21y11 + a2gB

22y21 and g22 = (a2gB
21 + e2g)y

12 + (a2gB
22 + e2g)y

22.

As with crsi in (12), it is possible to define the fraction f rs of gas emissions in country r, for
which country s is responsible, in a multi-country setting as follows:6

f rr =

∑
ℓ(a

r
gB

rℓ + erg)y
ℓr

argx
r + erg

∑
ℓ yℓr

and f rs =
arg
∑

ℓ B
rℓyℓs

argx
r + erg

∑
ℓ yℓr

(r ̸= s) (30)

with
∑

s f
rs = 1 being satisfied by definition. Alternately, the above expressions can be detailed

to the commodity level:

f rr =

∑
i(a

r
gi

∑
ℓ

∑
j b

rℓ
ijy

ℓr
j + ergi

∑
ℓ y

ℓr
i )∑

i(a
r
gix

r
i + ergi

∑
ℓ y

ℓr
i )

and f rs =

∑
i a

r
gi

∑
ℓ

∑
j b

rℓ
ijy

ℓs
j∑

i(a
r
gix

r
i + ergi

∑
ℓ y

ℓr
i )

(r ̸= s) (31)

In matrix form, equation (29) can easily be extended to the multi-country case by defining
the following matrices:

Ag =


a1g 0 · · · 0
0 a2g · · · 0
...

...
. . .

...
0 0 · · · amg

 , B =


B11 · · · B1m

...
. . .

...
Bm1 · · · Bmm

 , Eg =


e1g e1g · · · e1g
e2g e2g · · · e2g
...

...
. . .

...
emg emg · · · emg

 ,

where Ag, B and Eg are matrices of sizes m×mn, mn×mn, and m×mn, respectively. Further,
define

X =


x1

...
xm

 , Y =


y11 · · · y1m

...
. . .

...
ym1 · · · ymm

 , g =


g1

...
gm

 ,1 =


1
...
1

 ,

which are a column vector of size mn, a matrix of size mn×m, a column vector of size m, and
the all-one vector of size m, respectively. Then the decomposition of GHG emissions from the
production process can be written as

AgX = AgBY 1.

With the operator Diag(•) to extract the diagonal elements of square matrices, the emissions
from final demand consumption can be written as Diag(EgY )1. Thus the emission vector G
can be written, in matrix form, as

g = (AgBY +Diag(EgY ))1. (32)

6In the case of price decomposition, crsi represents the share of product i in country s that comes from
country r. When comparing the sums

∑
r c

rs
i = 1 and

∑
s f

rs = 1, the superscripts appear to be reversed as
they represent transfers in opposite directions: TiVA represents backward linkage while emissions respond to
forward linkage.
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The decomposition of GHG emissions over the countries can then be obtained using (30):

G =


g11 g12 · · · g1m

g21 g22 · · · g2m

...
...

. . .
...

gm1 gm2 · · · gmm

 =


g1 0 · · · 0
0 g2 · · · 0
...

...
. . .

...
0 0 · · · gm




f 11 f 12 · · · f 1m

f 21 f 22 · · · f 2m

...
...

. . .
...

fm1 fm2 · · · fmm

 = diag(g)F.

(33)

8 The problem with GHG abatement

The model in the previous section is open-ended in the sense that it simply calculates the GHG
emissions and clarifies the responsibility of each country without considering environmental re-
strictions. In contrast, when such restrictions and pollution abatement activity are introduced,
it is possible to assess the fair penalty for the GHG emissions discharged into the environment.
In the case of an isolated country with two industrial sectors and an abatement sector, the
environmental restriction is normally given in the form

ag1x1 + ag2x2 + aggxg + eg1y1 + eg2y2 − xg ≤ g, (34)

where g is the amount of GHG permitted to be discharged into the environment, xg is the
amount of GHG eliminated, and agg is the GHG emission from the abatement activity. Likewise
the output requirement for industrial sectors can be written using the input requirement for a
unit reduction of GHG, aig, as follows:

xi − ai1x1 − ai2x2 − aigxg ≥ yi (i = 1, 2).

Considering the direction of inequalities, a linear programming problem similar to (1) can be
formulated with labor input a0g in the abatement sector:

minx1,x2,xg w(a01x1 + a02x2 + a0gxg),

s.t. (1− a11)x1 − a12x2 − a1gxg ≥ y1,

−a21x1 + (1− a22)x2 − a2gxg ≥ y2,

−ag1x1 − ag2x2 + (1− agg)xg ≥ eg1y1 + eg2y2 − g,

x1, x2, xg ≥ 0. (35)

The solution to this problem can be readily obtained:7 x1

x2

xg

 =

 1− a11 −a12 −a1g
−a21 1− a22 −a2g
−ag1 −ag2 1− agg


−1 y1

y2
eg1y1 + eg2y2 − g

 . (36)

7According to the weak-solvability condition, the solution to the Leontief model, x = (I−A)−1y, is guaranteed
non-negative when the Leontief matrix (I−A) is positive definite and y is non-negative (see, e.g., Nikaido, 1968).
In this case, however, such conditions do not necessarily apply since eg1y1 + eg2y2 − g could be negative in an
unrealistic case where the environmental restriction is very loose and there is no need for abatement.
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When λ denotes the Lagrangian multiplier assigned to (34), it is interpreted as the unit price
of GHG emission. All the price variables, including λ, are obtained from the dual system:

(p1 p2 λ) = w(a01 a02 a0g)

 1− a11 −a12 −a1g
−a21 1− a22 −a2g
−ag1 −ag2 1− agg


−1

. (37)

To extend this approach to the problem of a world comprising two countries, the output
equations are formulated for individual countries as follows:

x1
1

x1
2

x1
g

−


a1111 a1112 a111g

a1121 a1122 a112g

a1g1 a1g2 a1gg




x1
1

x1
2

x1
g

−


a1211 a1212 a121g

a1221 a1222 a122g

0 0 0




x2
1

x2
2

x2
g

=


y111 + y121

y112 + y122

e1g1(y
11
1 + y211 ) + e1g2(y

11
2 + y212 )− g1

 ,


x2
1

x2
2

x2
g

−


a2111 a2112 a211g

a2121 a2122 a212g

0 0 0




x1
1

x1
2

x1
g

−


a2211 a2212 a221g

a2221 a2222 a222g

a2g1 a2g2 a2gg




x2
1

x2
2

x2
g

=


y211 + y221

y212 + y222

e2g1(y
12
1 + y221 ) + e2g2(y

12
2 + y222 )− g2


Here transportation of GHG across countries is precluded: i.e., production activity in one
country does not discharge GHG in the other country.8

For the sake of convenience, let Ã11, Ã12, Ã21 and Ã22, respectively, denote the matrices of
input coefficients in the order that they appeared in the above two equations. Also let u1 and
u2 denote the column vectors on the right hand sides of the above equations. Moreover, define
the augmented column vector of outputs and row vector of labor inputs as follows:

x̃r = (xr
1 xr

2 xr
g)

′ and ãr0 = (ar01 ar02 ar0g).

Then the world problem with GHG abatement activity can be formulated in matrix form:

minx̃1,x̃2 w1ã10x̃
1 + w2ã20x̃

2

s.t. (I − Ã11)x̃1 − Ã12x̃2 ≥ u1 (38)

−Ã21x̃1 + (I − Ã22)x̃2 ≥ u2 (39)

x̃1, x̃2 ≥ 0.

By denoting the row vectors of Lagrange multipliers attached to (38) and (39) as q1 and q2,
respectively, the Lagrangian function for the problem can be written as

L = w1ã10x̃
1 + w2ã20x̃

2 + q1(u1 − (I − Ã11)x̃1 + Ã12x̃2) + q2(u2 + Ã21x̃1 − (I − Ã22)x̃2). (40)

With non-negativity constraints, the first-order conditions would become

∂L

∂x̃1
= w1ã10 − q1(I − Ã11) + q2Ã21 ≥ 0,

∂L

∂x̃2
= w2ã20 + q1Ã12 − q2(I − Ã22) ≥ 0. (41)

8It must be noted that the combination of traded final demands for GHG is different from that of other
commodities.
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Thus the multipliers are determined as follows:

(q1 q2) = (p11 p12 λ1 p21 p22 λ2) ≤ (w1ã10 w2ã20)

(
I − Ã11 −Ã12

−Ã21 I − Ã22

)−1

. (42)

When the vector (x̃1, x̃2) is positive, (42) holds with equality. However, this is not necessarily
true with very loose environmental restrictions since GHG emission may become a “free good”
(λr = 0) in that case.

Suppose all the constraints are binding, and B̃rs denotes an element of the Leontief inverse
in (42). Then the responsibilities for GHG emissions are distributed over the countries in the
same way as in the case without abatement activity.(

g11 g12

g21 g22

)
=

(
(ã1gB̃

11 + ẽ1g)ỹ
11 + (ã1gB̃

12 + ẽ1g)ỹ
21 ã1gB̃

11ỹ12 + ã1gB̃
12ỹ22

ã2gB̃
21ỹ11 + ã2gB̃

22ỹ21 (ã2gB̃
21 + ẽ2g)ỹ

12 + (ã2gB̃
22 + ẽ2g)ỹ

22

)
, (43)

where vectors ãrg, ẽ
r
g, and ỹrs are also augmented to include the abatement.

ãrg = (arg1 arg2 argg), ẽrg = (erg1 erg2 0), and ỹrs = (yrs1 yrs2 0)′.

By the same token, the values added can also be decomposed:(
Y 11 Y 12

Y 21 Y 22

)
=(

q1C̃11(ỹ11 + ỹ12 + Ã12x̃2)− q2C̃22Ã21x̃1 q1C̃12(ỹ21 + ỹ22 + Ã21x̃1)− q1C̃21Ã12x̃2

q2C̃21(ỹ11 + ỹ12 + Ã12x̃2)− q2C̃12Ã21x̃1 q2C̃22(ỹ21 + ỹ22 + Ã21x̃1)− q1C̃11Ã12x̃2

)
, (44)

where the diagonal matrix C̃rs is augmented to include the decomposition of GHG abatement
cost λs.

In this article, we demonstrated that the linear programming equivalent of a physical IO
system can decompose both value added and GHG emissions, down to the level of ultimate
beneficiaries or causes, in a consistent manner. The GHG emissions are likely to be proportional
to the physical amounts produced or consumed rather than their monetary values. For example,
fuel efficiency would better be evaluated by the liters rather than dollars of gasoline burned,
and thus, the use of a physical system seems more appropriate. When GHG abatement activity
is introduced, the price for emission rights can be endogenized. Then the question is how to
determine a fair allocation of emission permits (see Uzawa, 2003). The existence of tradable
emission permits then introduces a new form of income transfer among countries. Besides
when the domestic labor market and international financial market are properly combined, the
physical framework can also endogenize the exchange rates and, by annexing several markets
outside the IO system, the system becomes closer to the spatial computable general equilibrium
(SCGE) model (see, e.g., Ando and Meng, 2014).

Although the physical IO system has several desirable properties, the problem is that (inter-
national) physical tables are not available. Thus one important task is to compile a physical
table from existing monetary tables, and derive some meaningful analytical results. However,
such a task is beyond the scope of this article, and has been left for the future research.
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